Minimum Hellinger distance (MHD) estimation is extended to a simulated version with the model density function replaced by a density estimate based on a random sample drawn from the model distribution. The method does...Minimum Hellinger distance (MHD) estimation is extended to a simulated version with the model density function replaced by a density estimate based on a random sample drawn from the model distribution. The method does not require a closed-form expression for the density function and appears to be suitable for models lacking a closed-form expression for the density, models for which likelihood methods might be difficult to implement. Even though only consistency is shown in this paper and the asymptotic distribution remains an open question, our simulation study suggests that the methods have the potential to generate simulated minimum Hellinger distance (SMHD) estimators with high efficiencies. The method can be used as an alternative to methods based on moments, methods based on empirical characteristic functions, or the use of an expectation-maximization (EM) algorithm.展开更多
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characte...GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.展开更多
Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation...Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation methods developed are also related to estimation methods based on generalized estimating equations but with the advantage of having statistics for model testing. The methods proposed overcome numerical problems often encountered when the probability mass functions have no closed forms which prevent the use of maximum likelihood (ML) procedures and in general, ML procedures do not lead to distribution free model testing statistics.展开更多
文摘Minimum Hellinger distance (MHD) estimation is extended to a simulated version with the model density function replaced by a density estimate based on a random sample drawn from the model distribution. The method does not require a closed-form expression for the density function and appears to be suitable for models lacking a closed-form expression for the density, models for which likelihood methods might be difficult to implement. Even though only consistency is shown in this paper and the asymptotic distribution remains an open question, our simulation study suggests that the methods have the potential to generate simulated minimum Hellinger distance (SMHD) estimators with high efficiencies. The method can be used as an alternative to methods based on moments, methods based on empirical characteristic functions, or the use of an expectation-maximization (EM) algorithm.
文摘GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
文摘Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation methods developed are also related to estimation methods based on generalized estimating equations but with the advantage of having statistics for model testing. The methods proposed overcome numerical problems often encountered when the probability mass functions have no closed forms which prevent the use of maximum likelihood (ML) procedures and in general, ML procedures do not lead to distribution free model testing statistics.