In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.
In this paper, an improved feasible QP-free method is proposed to solve nonlinear inequality constrained optimization problems. Here, a new modified method is presented to obtain the revised feasible descent direction...In this paper, an improved feasible QP-free method is proposed to solve nonlinear inequality constrained optimization problems. Here, a new modified method is presented to obtain the revised feasible descent direction. In view of the computational cost, the most attractive feature of the new algorithm is that only one system of linear equations is required to obtain the revised feasible descent direction. Thereby, per single iteration, it is only necessary to solve three systems of linear equations with the same coefficient matrix. In particular, without the positive definiteness assumption on the Hessian estimate, the proposed algorithm is still global convergence. Under some suitable conditions, the superlinear convergence rate is obtained.展开更多
This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is mon...This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is monotonically increasing. The search directions only depend on solving one quadratic proraming and its simple correction, its line search is simple straight search and does not depend on any penalty function. Under suit assumptions, the algorithm is proved to possess global and superlinear convergence.展开更多
This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new...This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.展开更多
基金Supported by the National Natural Sciences Foundation of China (No.39830070 and 10171055).
文摘In this paper, a new SQP method for inequality constrained optimization is proposed and the global convergence is obtained under very mild conditions.
基金This research is supported in part by the National Natural Science Foundation of China(No. 39830070).
文摘In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11061011 and 71061002)Guangxi Fund for Distinguished Young Scholars (2012GXSFFA060003)
文摘In this paper, an improved feasible QP-free method is proposed to solve nonlinear inequality constrained optimization problems. Here, a new modified method is presented to obtain the revised feasible descent direction. In view of the computational cost, the most attractive feature of the new algorithm is that only one system of linear equations is required to obtain the revised feasible descent direction. Thereby, per single iteration, it is only necessary to solve three systems of linear equations with the same coefficient matrix. In particular, without the positive definiteness assumption on the Hessian estimate, the proposed algorithm is still global convergence. Under some suitable conditions, the superlinear convergence rate is obtained.
文摘This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is monotonically increasing. The search directions only depend on solving one quadratic proraming and its simple correction, its line search is simple straight search and does not depend on any penalty function. Under suit assumptions, the algorithm is proved to possess global and superlinear convergence.
基金the Scientific Research Foundation of Hunan Provincial Education Department, No. 02B021, and the National Natural Science Foundation of China, No. 10171008.
文摘This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.