The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba...The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.展开更多
Accessibility and availability of fresh clean water is a key to sustainable development and essential element in health, food production and poverty reduction. In the present study, we have collected water sachet cont...Accessibility and availability of fresh clean water is a key to sustainable development and essential element in health, food production and poverty reduction. In the present study, we have collected water sachet containing CM/L number and they were analysed for physical and bacteriological nature. The organisms isolated in this study were Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas vesicularis and Pseudomonas aeruginosae. The harmful effects of these isolates were evidenced by antibiotic resistance, heavy metal tolerance and antibacterial activity. They were resistant to the antibiotics like amoxiclav, methicillin, chloramphenicol and streptomycin. They showed tolerance to the heavy metals at 5 mM conc. except for lead. For antibacterial activity, they were tested against human pathogens Klebsiella pnemoniae, Proteus mirabilis, Micrococcus leuteus and Salmonella paratyphium. But at the same time these organisms could be exploited for the industrial production of amylase, protease and cellulase.展开更多
A new class of enzyme was established that hydrolyze the ester bond between D-Tyr bound onto its cognate t-RNA. The enzyme is called D-Tyr-tRNA deacylase. The three dimensional structure of the D-Tyr-tRNA deacylase fr...A new class of enzyme was established that hydrolyze the ester bond between D-Tyr bound onto its cognate t-RNA. The enzyme is called D-Tyr-tRNA deacylase. The three dimensional structure of the D-Tyr-tRNA deacylase from industrially important microorganism Bacillus lichenformis DSM13 was predicted by comparative modeling approach. Since the protein acts as a dimer a dimeric model of the enzyme was constructed. The interactions responsible for dimerization were also predicted. With the help of docking and molecular dynamics simulations the favourable binding mode of the enzyme was predicted. The probable biochemical mechanism of the hydrolysis process was elucidated. This study provides a rational framework to interpret the molecular mechanistic details of the removal of toxic D-Tyr-tRNA from the cells of industrially important microorganism Bacillus lichenformis DSM13 using the enzyme D-Tyr-tRNA deacylase.展开更多
Glassy carbon(GC)is a type of non-graphitizing disordered carbon material at ambient pressure and high temperatures,which has been widely used due to its excellent mechanical properties.Here we report the changes in t...Glassy carbon(GC)is a type of non-graphitizing disordered carbon material at ambient pressure and high temperatures,which has been widely used due to its excellent mechanical properties.Here we report the changes in the microstructure and mechanical properties of GC treated at high pressures(up to 5 GPa)and high temperatures.The formation of intermediate sp2-sp3 phases is identified at moderate treatment temperatures before the complete graphitization of GC,by analyzing synchrotron X-ray diffraction,Raman spectra,and transmission electron microscopy images.The intermediate metastable carbon materials exhibit superior mechanical properties with hardness reaching up to 10 GPa and compressive strength reaching as high as 2.5 GPa,nearly doubling those of raw GC,and improving elasticity and thermal stability.The synthesis pressure used in this study can be achieved in the industry on a commercial scale,enabling the scalable synthesis of this type of strong,hard,and elastic carbon materials.展开更多
Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particular...Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particularly hydrolytic enzymes.The present study investigated the effect of different carbon,organic and inorganic nitrogens on the growth and ligninolytic enzyme production by the endophytic fungus Diaporthe phaeolorum.The fungus was isolated from the leaves of Dillenia indica and analyzed by morpho-molecular basis.The fungus showed promising results for in vitro production of ligninolytic enzymes.Sucrose was the most favorable carbon compound for growth among all the carbon compounds tested.It displayed maximum lignin peroxidase(Lip)activity in fructose(3.5 U/ml),followed by pectin(2.60 U/ml)and glucose(2.53 U/ml).Glucose gave the highest manganese peroxidase(MnP)activity i.e.,6.88 U/ml followed by starch,sucrose and raffinose.Similarly,the maximum laccase activity was 44.5 U/ml in pectin.Potassium nitrate and L-asparagine were the best inorganic and organic nitrogen for growth.In the case of ligninolytic enzyme production,ammonium acetate and ammonium phosphate were the best media for LiP and MnP,whereas laccase production was highest in ammonium nitrate supplemented medium.In organic nitrogen sources,medium supplemented with DL-tryptophan gave the highest Lip production,whereas MnP and laccase production was observed in the medium containing L-tyrosine and L-asparagine.To the best of our knowledge,this is the first report related to the growth and ligninolytic enzyme production by Diaporthe phaseolorum.The findings from the study will assist researchers in improving the production of ligninolytic enzymes by this fungus under in vitro conditions on an industrial scale.展开更多
The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commer...The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).展开更多
With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles o...With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles of their production, transportation, storage, consumption, and as by-products and wastes. The rising rates of cancer, obesity, and infertility suggests that there are compounds recently introduced to the environment that have altered the chemistry of the human body, and it is only with the monitoring of xenobiotics such as Bisphenol A (BPA), nonyphenols, estrogen (natural and synthetic) and other endocrine-disrupting compounds (EDCs) that patterns and links could be drawn. This paper investigates the safety, environmental and health (SHE) impacts caused by BPA, nonyphenols and estrogens. Derived from petroleum, bisphenol A is used in manufacturing plastic consumer products, including certain water bottles, in dental sealants for children's teeth, and in resins used to line tin cans. Nonyphenol is one of the by-products of alkylphenolpolyethoxilates which is widely used as nonionic surfactants. Synthetic estrogen used for birth control pills as well as natural estrogen excreted by women through urine enters the domestic wastewater streams. These compounds are considered to be EDCs and have severe SHE concerns. In this paper, the challenges of entry of these compounds (xenobiotics) into nature, health and environmental issues and their remediation have been reviewed in detail.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:11974303,12074332Qinglan Project of Jiangsu Province,Grant/Award Number:137050317the Interdisciplinary Research Project of Chemistry Discipline,Grant/Award Number:yzuxk202014 and High‐End Talent Program of Yangzhou University,Grant/Award Number:137080051。
文摘The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis.
文摘Accessibility and availability of fresh clean water is a key to sustainable development and essential element in health, food production and poverty reduction. In the present study, we have collected water sachet containing CM/L number and they were analysed for physical and bacteriological nature. The organisms isolated in this study were Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas vesicularis and Pseudomonas aeruginosae. The harmful effects of these isolates were evidenced by antibiotic resistance, heavy metal tolerance and antibacterial activity. They were resistant to the antibiotics like amoxiclav, methicillin, chloramphenicol and streptomycin. They showed tolerance to the heavy metals at 5 mM conc. except for lead. For antibacterial activity, they were tested against human pathogens Klebsiella pnemoniae, Proteus mirabilis, Micrococcus leuteus and Salmonella paratyphium. But at the same time these organisms could be exploited for the industrial production of amylase, protease and cellulase.
文摘A new class of enzyme was established that hydrolyze the ester bond between D-Tyr bound onto its cognate t-RNA. The enzyme is called D-Tyr-tRNA deacylase. The three dimensional structure of the D-Tyr-tRNA deacylase from industrially important microorganism Bacillus lichenformis DSM13 was predicted by comparative modeling approach. Since the protein acts as a dimer a dimeric model of the enzyme was constructed. The interactions responsible for dimerization were also predicted. With the help of docking and molecular dynamics simulations the favourable binding mode of the enzyme was predicted. The probable biochemical mechanism of the hydrolysis process was elucidated. This study provides a rational framework to interpret the molecular mechanistic details of the removal of toxic D-Tyr-tRNA from the cells of industrially important microorganism Bacillus lichenformis DSM13 using the enzyme D-Tyr-tRNA deacylase.
基金supported by the National Key R&D Program of China(Grants No.2018YFA0703400)the National Natural Science Foundation of China(Grants Nos.51672238,91963203,51722209,and 51525205)+2 种基金M.Hu acknowledges fellowship support by the Alexander von Humboldt Foundation.Z.Zhao acknowledges 100 talents plan of Hebei Province(Grants No.E2016100013)NSF for Distinguished Young Scholars of Hebei Province of China(Grants No.E2018203349)K.Luo acknowledges the China Postdoctoral Science Foundation(Grants No.2017M620097).
文摘Glassy carbon(GC)is a type of non-graphitizing disordered carbon material at ambient pressure and high temperatures,which has been widely used due to its excellent mechanical properties.Here we report the changes in the microstructure and mechanical properties of GC treated at high pressures(up to 5 GPa)and high temperatures.The formation of intermediate sp2-sp3 phases is identified at moderate treatment temperatures before the complete graphitization of GC,by analyzing synchrotron X-ray diffraction,Raman spectra,and transmission electron microscopy images.The intermediate metastable carbon materials exhibit superior mechanical properties with hardness reaching up to 10 GPa and compressive strength reaching as high as 2.5 GPa,nearly doubling those of raw GC,and improving elasticity and thermal stability.The synthesis pressure used in this study can be achieved in the industry on a commercial scale,enabling the scalable synthesis of this type of strong,hard,and elastic carbon materials.
基金Acknowledgments The authors acknowledge the Department of Botany,Panjab University Chandigarh,India,for providing infrastructure and instrumentation.Vijay Kumar is also thankful for Senior Research Fellowship(File No.09/135(0854)/2019-EMR-I)the Council of Scientific and Industrial Research(CSIR),India,during research work.
文摘Endophytic fungi are being investigated for their ability to create industrially relevant secondary metabolites.In recent years,there has been a surge in interest in these fungi as a source of novel enzymes,particularly hydrolytic enzymes.The present study investigated the effect of different carbon,organic and inorganic nitrogens on the growth and ligninolytic enzyme production by the endophytic fungus Diaporthe phaeolorum.The fungus was isolated from the leaves of Dillenia indica and analyzed by morpho-molecular basis.The fungus showed promising results for in vitro production of ligninolytic enzymes.Sucrose was the most favorable carbon compound for growth among all the carbon compounds tested.It displayed maximum lignin peroxidase(Lip)activity in fructose(3.5 U/ml),followed by pectin(2.60 U/ml)and glucose(2.53 U/ml).Glucose gave the highest manganese peroxidase(MnP)activity i.e.,6.88 U/ml followed by starch,sucrose and raffinose.Similarly,the maximum laccase activity was 44.5 U/ml in pectin.Potassium nitrate and L-asparagine were the best inorganic and organic nitrogen for growth.In the case of ligninolytic enzyme production,ammonium acetate and ammonium phosphate were the best media for LiP and MnP,whereas laccase production was highest in ammonium nitrate supplemented medium.In organic nitrogen sources,medium supplemented with DL-tryptophan gave the highest Lip production,whereas MnP and laccase production was observed in the medium containing L-tyrosine and L-asparagine.To the best of our knowledge,this is the first report related to the growth and ligninolytic enzyme production by Diaporthe phaseolorum.The findings from the study will assist researchers in improving the production of ligninolytic enzymes by this fungus under in vitro conditions on an industrial scale.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21978192)the SINOPEC Technology Project(No.117009-1)the Shanxi Province Key Innovative Research Team in Science and Technology(No.2014131006).
文摘The catalytic transformation of methylcyclohexane as an accepted probe reaction to evaluate zeolitic acidity(concentration,strength,and accessibility)is employed to study the acidity and the reactivity of three commercial dealuminated Y zeolites(DAY)with different Si/Al ratios and meso/microporosities,with their properties analyzed by N_(2) adsorption/desorption,pyridine-IR,and hydroxyl-IR spectroscopy technologies.The global activity(conversion)is largely dependent on the concentration of the acid sites,and the activity of the protonic sites in terms of turnover frequency(TOF)reflects the accessibility of acid sites.The products of aromatics and isomers,and the yield of cracking products increase with the increase of concentration of strong protonic sites in zeolite micropores.Moreover,the decrease of aromatics with the reduction of the concentration of acid sites and the diffusion length within DAY zeolites are observed due to the decrease of the secondary reaction.For the same reason,it results in the increasing of C_(7)products and alkenes/alkanes ratios in the cracking products.The high i-C_(4)product selectivity is a unique reflection of the high percentage of very strong acid sites,which is characterized by the hydroxyl-IR band at 3600 cm^(-1).
文摘With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles of their production, transportation, storage, consumption, and as by-products and wastes. The rising rates of cancer, obesity, and infertility suggests that there are compounds recently introduced to the environment that have altered the chemistry of the human body, and it is only with the monitoring of xenobiotics such as Bisphenol A (BPA), nonyphenols, estrogen (natural and synthetic) and other endocrine-disrupting compounds (EDCs) that patterns and links could be drawn. This paper investigates the safety, environmental and health (SHE) impacts caused by BPA, nonyphenols and estrogens. Derived from petroleum, bisphenol A is used in manufacturing plastic consumer products, including certain water bottles, in dental sealants for children's teeth, and in resins used to line tin cans. Nonyphenol is one of the by-products of alkylphenolpolyethoxilates which is widely used as nonionic surfactants. Synthetic estrogen used for birth control pills as well as natural estrogen excreted by women through urine enters the domestic wastewater streams. These compounds are considered to be EDCs and have severe SHE concerns. In this paper, the challenges of entry of these compounds (xenobiotics) into nature, health and environmental issues and their remediation have been reviewed in detail.