Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle fiel...Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks.展开更多
Cementations formed in geological timescale are observed in various stiff clays.A micromechanical stress strain model is developed for modeling the effect of cementation on the deformation behavior of stiff clay.The p...Cementations formed in geological timescale are observed in various stiff clays.A micromechanical stress strain model is developed for modeling the effect of cementation on the deformation behavior of stiff clay.The proposed approach considers explicitly cementations at intercluster contacts,which is different from conventional model.The concept of inter-cluster bonding is introduced to account for an additional cohesion in shear sliding and a higher yield stress in normal compression.A damage law for inter-cluster bonding is proposed at cluster contacts for the debonding process during mechanical loading.The model is used to simulate numerous stress-path tests on Vallericca stiff clay.The applicability of the present model is evaluated through comparisons between the predicted and the measured results.In order to explain the stress-induced anisotropy arising from externally applied load,the evolution of local stresses and local strains at inter-cluster planes are discussed.展开更多
In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation ...In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation was fabricated using zone-melting unidirectional solidification technique, followed by annealing in a transverse magnetic field of 366 kA/m. The crystal orientation and bi-phase solidified morphology can be retained after magnetic annealing. A high magnetostriction of 1.508×10^-3 was obtained in the magnetically annealed specimen, which is 25.2% larger than the untreated one. Simultaneously, the magnetostriction hysteresis width is slightly enlarged from 4.45 to 6.36 kA/m, which is still much lower than that of the Ho-free Tbo.3Dy0.TFe2 alloy. The additional anisotropy which is induced by magnetic annealing, as reflected by the magnetic hysteresis loops, is responsible for the enhancement of magnetostrictive performance.展开更多
基金financial support from the National Natural Science Foundation of China (Grant No. 51679068)the Fundamental Research Funds for the Central Universities (Grant Nos. 2014B06914 and 2016B20214)
文摘Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks.
基金supported by the Shanghai Pujiang Talent People Project(11PJ1405700)the National Science Funds for Distinguished Young Scholars(51025932)
文摘Cementations formed in geological timescale are observed in various stiff clays.A micromechanical stress strain model is developed for modeling the effect of cementation on the deformation behavior of stiff clay.The proposed approach considers explicitly cementations at intercluster contacts,which is different from conventional model.The concept of inter-cluster bonding is introduced to account for an additional cohesion in shear sliding and a higher yield stress in normal compression.A damage law for inter-cluster bonding is proposed at cluster contacts for the debonding process during mechanical loading.The model is used to simulate numerous stress-path tests on Vallericca stiff clay.The applicability of the present model is evaluated through comparisons between the predicted and the measured results.In order to explain the stress-induced anisotropy arising from externally applied load,the evolution of local stresses and local strains at inter-cluster planes are discussed.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201037)the Fundamental Research Funds for the Central Universities(No.2012QNA4007)the Projects of Nonprofit Technology & Research in Zhejiang Province(No.2013C31025)
文摘In this work, a magnetic annealing method used to enhance the magnetostrictive property of a narrow hysteresis alloy Tb0.26Dyo.saHo0.20Fe2 is reported. Cylindrical-rod shaped specimen with 〈110〉 crystal orientation was fabricated using zone-melting unidirectional solidification technique, followed by annealing in a transverse magnetic field of 366 kA/m. The crystal orientation and bi-phase solidified morphology can be retained after magnetic annealing. A high magnetostriction of 1.508×10^-3 was obtained in the magnetically annealed specimen, which is 25.2% larger than the untreated one. Simultaneously, the magnetostriction hysteresis width is slightly enlarged from 4.45 to 6.36 kA/m, which is still much lower than that of the Ho-free Tbo.3Dy0.TFe2 alloy. The additional anisotropy which is induced by magnetic annealing, as reflected by the magnetic hysteresis loops, is responsible for the enhancement of magnetostrictive performance.