The effect of hot air(HA, 45°C, 3.5 h) treatment on reducing gray mold caused by Botrytis cinerea in strawberry fruit and the possible mechanisms were investigated. The results showed that HA treatment signific...The effect of hot air(HA, 45°C, 3.5 h) treatment on reducing gray mold caused by Botrytis cinerea in strawberry fruit and the possible mechanisms were investigated. The results showed that HA treatment significantly reduced lesion diameter and enhanced activities of chitinase(CHI), β-1,3-glucanase and phenylalanine ammonia-lyase(PAL) in strawberry fruit. Total phenolic contents were also increased by HA treatment. The activities of antioxidant enzymes including superoxide dismutase(SOD), catalase(CAT) and ascorbate peroxidase(APX) were higher in HA treated strawberry fruit than those in control. Expression of three defense related genes such as CAT, CCR-1 allele and PLA6 was greatly induced in HA treated strawberry fruit with or without inoculation by B. cinerea. In addition, the in vitro experiment showed that HA treatment inhibited spore germination and tube growth of B. cinerea. These results suggested that HA treatment directly activated disease resistance against B. cinerea in strawberry fruit without priming response and directly inhibiting growth of B. cinerea.展开更多
Owing to the complexity of electron transfer pathways,the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn-air batteries.In this effort,metal nanoparticles(Co...Owing to the complexity of electron transfer pathways,the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn-air batteries.In this effort,metal nanoparticles(Co,Ni,Fe,etc.)encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials,which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects.The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles(Co@NC-500)exhibits enhanced catalytic activity toward oxygen evolution reaction,with a low overpotential of 350 mV at the current density of 10 mA·cm^(-2).Furthermore,the Zn-air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm^(-2),indicating considerable practical application potential.展开更多
The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offsho...The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offshore exploration of mineral deposits such as Sanshandao gold mine.However,the re-search and application of TEM method in marine environment are still challenged by many problems.Such contradiction motivates our study on the coincident-loop TEM in seafloor exploration.The TEM response of coincident loops is firstly derived in the integral form,based on the potential functions in Helmholtz equ-ations for a magnetic source locating in the whole-space layered model.The frequency-domain vertical magnetic field is described as the Hankel integral with double first-order Bessel functions of first kind.Se-condly,the time-domain induced voltage is obtained by transforming the frequency-domain response through the cosine transform and then taking the derivative of time.To simultaneously solve the Hankel transform and the cosine transform,a novel algorithm is introduced by adapting the fixed-point quadra-ture and extrapolation via the Shanks transformation.Finally,a typical conductivity model for marine po-lymetallic deposit is designed to investigate the characteristic of TEM response under various conditions.Numerical results demonstrate that existence of conductive seawater causes the TEM response to increase significantly and decay slower.The air-sea reflected electromagnetic waves lead to a significantly large fake negative response(NR)in shallower seawater with depth less than 300 m.Increase in the height of loops will weaken and delay the anomaly response and shorten the observation time-window.The height of configu-ration should be no more than 100 m for shallower targets and 50 m for deeper targets,respectively.The observation time-window should cover 10-1000 ms.Increase in the radius of loops only enhances the TEM response proportionally but hardly improves the relative anomaly.The vertical resolution o展开更多
In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma c...In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma column,is observed. When the shorter focal length lens is used, a high density plasma isgenerated near the geometrical focus and coexists with a weak plasma channel of the filamemt. Under thetightest focusing condition, filamentation is prevented and only a strong plasma volume appears at tehgeometrical focus.展开更多
A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mir...A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors, a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.展开更多
Coupled effects of railway vibration, rainfall, and drying-wetting cycles contribute to new types of loess disasters such as the collapse and vibration-induced settlement of the railway subgrade, loess mass disintegra...Coupled effects of railway vibration, rainfall, and drying-wetting cycles contribute to new types of loess disasters such as the collapse and vibration-induced settlement of the railway subgrade, loess mass disintegration, and slope sliding,during the large-scale construction and operation of high-speed or heavy-haul railways in China. This has significant consequences for railways that require millimetre-level deformation control, seriously threatening railway operation and people's lives. Therefore, for the first time, "five vibration-induced effects" on loess subjected to vibration, water immersion, and drywetting cycles are discussed including the vibration-induced acceleration of cracking, infiltration, disintegration, sliding, and subsidence. In this paper, the vibration-induced acceleration of infiltration is discussed mainly. The response of loess to locomotive vibration along railways was determined using field sampling and data processing. The dominant frequency of locomotive vibration are 18-22 Hz and the maximum amplitude is 0.4 mm. Tests regarding the vibration-induced acceleration of the permeability were conducted on intact loess using a newly developed vibration permeability apparatus. The results reveal that the vibration accelerates the water permeability and increases the water saturation of loess. The permeability coefficient of saturated loess under vibration is ~1.5-20 times of that without vibration, reaching a maximum at a vibration frequency of 20 Hz.Vibration-induced infiltration tests were carried out on a loess column and the vibration-induced acceleration of water infiltration, wetting front evolution, and air outflow were analysed. The vibration-induced acceleration of infiltration strongly depends on the dry density, vibration frequency, and vibration amplitude. This pioneering work explores the mechnism of loess disasters triggered by locomotive vibration, rainfall, and drying-wetting cycles.展开更多
Considering the number of deaths due to air pollution,it is clear that it poses a great danger to public health.Sources that cause air pollution can be divided into two groups:natural resources(such as desert storms,f...Considering the number of deaths due to air pollution,it is clear that it poses a great danger to public health.Sources that cause air pollution can be divided into two groups:natural resources(such as desert storms,fires and volcanic eruptions)and artificial sources(residences,industrial sector and motor vehicles),which cause a much higher rate of air pollution than natural resources.It is known that air pollutants originating from ships and port operations have an important share among vehicle sourced pollutants.Considering the emissions from both ships and operational reasons and their proximity to human habitats,it is obvious that port regions are important points in terms of emissions harmful to human health.The use of cold-ironing technology in ports instead of providing the energy needed from ship auxiliary machinery during the hotelling period at the port is the most effective method used to reduce the amount of ship-sourced emissions in the port area.On the other hand,it is seen that the number of ports where cold-ironing technology is used,which is extremely effective in reducing emissions harmful to human health,is quite limited.In this context,the share of the emission amount during the hotelling period in the total emission amount in the port area was calculated according to ship type and duration of hotelling in the port,and the importance of the use of cold-ironing technology in reducing the port-originated emissions was emphasized.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201303073)the Fundamental Research Funds for the Central Universities,China(KYZ201420)
文摘The effect of hot air(HA, 45°C, 3.5 h) treatment on reducing gray mold caused by Botrytis cinerea in strawberry fruit and the possible mechanisms were investigated. The results showed that HA treatment significantly reduced lesion diameter and enhanced activities of chitinase(CHI), β-1,3-glucanase and phenylalanine ammonia-lyase(PAL) in strawberry fruit. Total phenolic contents were also increased by HA treatment. The activities of antioxidant enzymes including superoxide dismutase(SOD), catalase(CAT) and ascorbate peroxidase(APX) were higher in HA treated strawberry fruit than those in control. Expression of three defense related genes such as CAT, CCR-1 allele and PLA6 was greatly induced in HA treated strawberry fruit with or without inoculation by B. cinerea. In addition, the in vitro experiment showed that HA treatment inhibited spore germination and tube growth of B. cinerea. These results suggested that HA treatment directly activated disease resistance against B. cinerea in strawberry fruit without priming response and directly inhibiting growth of B. cinerea.
基金the National Natural Science Foundation of China(Grant Nos.22179065,22111530112)the S&T project from Shanghai Tobacco Group Co.Ltd.
文摘Owing to the complexity of electron transfer pathways,the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn-air batteries.In this effort,metal nanoparticles(Co,Ni,Fe,etc.)encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials,which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects.The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles(Co@NC-500)exhibits enhanced catalytic activity toward oxygen evolution reaction,with a low overpotential of 350 mV at the current density of 10 mA·cm^(-2).Furthermore,the Zn-air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm^(-2),indicating considerable practical application potential.
基金This research was supported by the National Key R&D Program of China(No.2018YFC0603806).
文摘The transient electromagnetic(TEM)method becomes more urgent than ever for marine ex-ploration due to abundant resource reserves and the increasing undersea engineering construction activities,especially in the offshore exploration of mineral deposits such as Sanshandao gold mine.However,the re-search and application of TEM method in marine environment are still challenged by many problems.Such contradiction motivates our study on the coincident-loop TEM in seafloor exploration.The TEM response of coincident loops is firstly derived in the integral form,based on the potential functions in Helmholtz equ-ations for a magnetic source locating in the whole-space layered model.The frequency-domain vertical magnetic field is described as the Hankel integral with double first-order Bessel functions of first kind.Se-condly,the time-domain induced voltage is obtained by transforming the frequency-domain response through the cosine transform and then taking the derivative of time.To simultaneously solve the Hankel transform and the cosine transform,a novel algorithm is introduced by adapting the fixed-point quadra-ture and extrapolation via the Shanks transformation.Finally,a typical conductivity model for marine po-lymetallic deposit is designed to investigate the characteristic of TEM response under various conditions.Numerical results demonstrate that existence of conductive seawater causes the TEM response to increase significantly and decay slower.The air-sea reflected electromagnetic waves lead to a significantly large fake negative response(NR)in shallower seawater with depth less than 300 m.Increase in the height of loops will weaken and delay the anomaly response and shorten the observation time-window.The height of configu-ration should be no more than 100 m for shallower targets and 50 m for deeper targets,respectively.The observation time-window should cover 10-1000 ms.Increase in the radius of loops only enhances the TEM response proportionally but hardly improves the relative anomaly.The vertical resolution o
文摘In this work we present experiments by focusing 42 femtosecond laser pulses in air using three differentfocal length lenses: f=100, 30 and 5 cm. For the longest focal length, only the filament, which is aweak plasma column,is observed. When the shorter focal length lens is used, a high density plasma isgenerated near the geometrical focus and coexists with a weak plasma channel of the filamemt. Under thetightest focusing condition, filamentation is prevented and only a strong plasma volume appears at tehgeometrical focus.
基金Supported by the National Natural Science Foundation of China under Grant No 60378003.
文摘A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors, a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42027806 and 41630639)the National Key Research and Development Program (Grant No. 2018YFC1504703)。
文摘Coupled effects of railway vibration, rainfall, and drying-wetting cycles contribute to new types of loess disasters such as the collapse and vibration-induced settlement of the railway subgrade, loess mass disintegration, and slope sliding,during the large-scale construction and operation of high-speed or heavy-haul railways in China. This has significant consequences for railways that require millimetre-level deformation control, seriously threatening railway operation and people's lives. Therefore, for the first time, "five vibration-induced effects" on loess subjected to vibration, water immersion, and drywetting cycles are discussed including the vibration-induced acceleration of cracking, infiltration, disintegration, sliding, and subsidence. In this paper, the vibration-induced acceleration of infiltration is discussed mainly. The response of loess to locomotive vibration along railways was determined using field sampling and data processing. The dominant frequency of locomotive vibration are 18-22 Hz and the maximum amplitude is 0.4 mm. Tests regarding the vibration-induced acceleration of the permeability were conducted on intact loess using a newly developed vibration permeability apparatus. The results reveal that the vibration accelerates the water permeability and increases the water saturation of loess. The permeability coefficient of saturated loess under vibration is ~1.5-20 times of that without vibration, reaching a maximum at a vibration frequency of 20 Hz.Vibration-induced infiltration tests were carried out on a loess column and the vibration-induced acceleration of water infiltration, wetting front evolution, and air outflow were analysed. The vibration-induced acceleration of infiltration strongly depends on the dry density, vibration frequency, and vibration amplitude. This pioneering work explores the mechnism of loess disasters triggered by locomotive vibration, rainfall, and drying-wetting cycles.
文摘Considering the number of deaths due to air pollution,it is clear that it poses a great danger to public health.Sources that cause air pollution can be divided into two groups:natural resources(such as desert storms,fires and volcanic eruptions)and artificial sources(residences,industrial sector and motor vehicles),which cause a much higher rate of air pollution than natural resources.It is known that air pollutants originating from ships and port operations have an important share among vehicle sourced pollutants.Considering the emissions from both ships and operational reasons and their proximity to human habitats,it is obvious that port regions are important points in terms of emissions harmful to human health.The use of cold-ironing technology in ports instead of providing the energy needed from ship auxiliary machinery during the hotelling period at the port is the most effective method used to reduce the amount of ship-sourced emissions in the port area.On the other hand,it is seen that the number of ports where cold-ironing technology is used,which is extremely effective in reducing emissions harmful to human health,is quite limited.In this context,the share of the emission amount during the hotelling period in the total emission amount in the port area was calculated according to ship type and duration of hotelling in the port,and the importance of the use of cold-ironing technology in reducing the port-originated emissions was emphasized.