介绍同塔四回输电线路感应电压、电流的计算理论,以某220 k V/110 k V同塔四回输电线路为研究对象,采用电磁暂态程序(ATP-EMTP)搭建线路分布式参数模型,仿真分析不同运行电流、相序排列方式、导线水平间距以及回路垂直间距对一回停运...介绍同塔四回输电线路感应电压、电流的计算理论,以某220 k V/110 k V同塔四回输电线路为研究对象,采用电磁暂态程序(ATP-EMTP)搭建线路分布式参数模型,仿真分析不同运行电流、相序排列方式、导线水平间距以及回路垂直间距对一回停运检修线路感应电压和感应电流的影响,并计算分析检修点两侧挂临时接地线流过检修人员的感应电流。计算结果表明:线路运行电流主要影响检修线路的电磁感应分量;线路相序排列方式对感应电压、电流影响显著;线路感应电压、电流与导线水平间距和回路垂直间距呈反相关关系;检修点两侧挂临时接地线时,流过人体的感应电流6-8 m A,大于人体的感知电流,在检修点加挂临时接地线后,流过人体的感应电流0.5~0.7μA,满足带电作业的要求。展开更多
文摘介绍同塔四回输电线路感应电压、电流的计算理论,以某220 k V/110 k V同塔四回输电线路为研究对象,采用电磁暂态程序(ATP-EMTP)搭建线路分布式参数模型,仿真分析不同运行电流、相序排列方式、导线水平间距以及回路垂直间距对一回停运检修线路感应电压和感应电流的影响,并计算分析检修点两侧挂临时接地线流过检修人员的感应电流。计算结果表明:线路运行电流主要影响检修线路的电磁感应分量;线路相序排列方式对感应电压、电流影响显著;线路感应电压、电流与导线水平间距和回路垂直间距呈反相关关系;检修点两侧挂临时接地线时,流过人体的感应电流6-8 m A,大于人体的感知电流,在检修点加挂临时接地线后,流过人体的感应电流0.5~0.7μA,满足带电作业的要求。