随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signa...随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signal Strength Indication)信号处理建立离线fingerprint数据库;通过对拟合距离-RSSI函数分析,提出了多边限定的方法确定一个最佳参考点(Reference Point,RP)集合,缩小在线定位阶段的搜索范围。在此基础上,再利用fingerprint定位方法进行定位。此外,实现了基于提出方法的室内定位系统原型用于算法性能评估。通过大量真实场景实验分析、验证了相较于传统fingerprint方法,基于多边限定的fingerprint定位方法能有效提高室内定位精度,增强系统鲁棒性。展开更多
文摘随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signal Strength Indication)信号处理建立离线fingerprint数据库;通过对拟合距离-RSSI函数分析,提出了多边限定的方法确定一个最佳参考点(Reference Point,RP)集合,缩小在线定位阶段的搜索范围。在此基础上,再利用fingerprint定位方法进行定位。此外,实现了基于提出方法的室内定位系统原型用于算法性能评估。通过大量真实场景实验分析、验证了相较于传统fingerprint方法,基于多边限定的fingerprint定位方法能有效提高室内定位精度,增强系统鲁棒性。