Traffic vehicles, many of which are powered by port fuel injection(PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehic...Traffic vehicles, many of which are powered by port fuel injection(PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600 nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles,which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.展开更多
Particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5), present in polluted air, has been associated with a large spectrum of health impairments, mainly because of its deep deposition into the lungs. Ar...Particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5), present in polluted air, has been associated with a large spectrum of health impairments, mainly because of its deep deposition into the lungs. Araraquara City (Southeast Brazil) is surrounded by sugar-cane plantations, which are burned to facilitate the harvesting;this process causes environmental pollution due to the large amounts of soot that are released into the atmosphere. In this work, the elemental composition of PM2.5 was studied in two scenarios, namely in sugar-cane harvesting (HV) and in non-harvesting (NHV) seasons. The sampling strategy included one campaign in each season. PM2.5 was collected using a dichotomous sampler (10 L·min-1, 24 h) with PTFE filters. Information concerning the bulk elemental concentration was provided by energy-dispersive X-ray fluorescence. Enrichment factor analysis indicated that S, Cl, K, Cr, Ni, Cu, Zn, As, Cd and Pb were highly enriched relative to their crustal ratios (to Al). Principal component analysis was used to get some insight about the sources of the elements. Principal component 1 (PC1) explained 30.5% of data variance. The elements that had high loading (>0.7) were: S, Cr, As, and Pb;these are associated with combustion of fossil fuels. In principal component 2 (PC2), Cl, Cu, Zn, and Cd showed high loadings;these elements are associated with biomass burning. The Ni concentration found is three times larger than the threshold of risk for lung cancer, as recommended by the World Health Organization.展开更多
In order to further understand the sources of PM2.5 in Shanghai air, the synchrotron X-ray fluores- cence microprobe at the BL-4A Beamline of Photon Factory of High Energy Accelerator Research Organization, Japan, was...In order to further understand the sources of PM2.5 in Shanghai air, the synchrotron X-ray fluores- cence microprobe at the BL-4A Beamline of Photon Factory of High Energy Accelerator Research Organization, Japan, was applied to analyze the individual PM2.5 particles collected from Shanghai air in the winter of 2007. Eight categories of emission sources were recognized in these individual particles. The source identification shows that most of the analyzed PM2.5 particles are derived from vehicle exhaust and metallurgical emissions. This suggests that the important emission sources of PM2.5 in Shanghai air would be vehicle exhaust and metallurgical activities.展开更多
Recent observations of Asian dust storms show an eastern expansion of the source area to degraded lands, where dust emissions have been little studied. The dust concentrations over the saline land of the western Songn...Recent observations of Asian dust storms show an eastern expansion of the source area to degraded lands, where dust emissions have been little studied. The dust concentrations over the saline land of the western Songnen Plain (SSL), Northeastern China, are circumstantially higher than those from the northwestern Chinese deserts. These concentrations are sensitive to the surface soil conditions and wind velocity on the ground. The dust samples collected during dust storm events on the SSL contain abundant Na, Mg, A1, K, Ca, Fe and Ti, as well as toxic elements such as Cu, V, Zn and Ba. Individual particle analysis reveals that fine saline particles (〈 10 μm in diameter) on the saline land, consisting largely of carbonate, halite and sulfate together with lithogenic minerals such as SiO2 and aluminosilicate, are eventually uplifted during the interval from spring to autuum. The predominantly fine saline particles uplifted from the SSL are likely transported eastward by the winter monsoon circulation and westerlies. Recent degradation of saline lands in Northeastern China would not only increase the frequency of dust storm events in the downwind area, but also might change the chemical composition of the Asian dust emissions.展开更多
基金supported by the Projects of International Cooperation and Exchanges of National Science Foundation of China (No.41571130031)the National Basic Research Program of China (No.2013CB228503)partly supported by a Grant-in-Aid for Scientific Research (B) (No.16H02942) from the JSPS
文摘Traffic vehicles, many of which are powered by port fuel injection(PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600 nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles,which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.
文摘Particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5), present in polluted air, has been associated with a large spectrum of health impairments, mainly because of its deep deposition into the lungs. Araraquara City (Southeast Brazil) is surrounded by sugar-cane plantations, which are burned to facilitate the harvesting;this process causes environmental pollution due to the large amounts of soot that are released into the atmosphere. In this work, the elemental composition of PM2.5 was studied in two scenarios, namely in sugar-cane harvesting (HV) and in non-harvesting (NHV) seasons. The sampling strategy included one campaign in each season. PM2.5 was collected using a dichotomous sampler (10 L·min-1, 24 h) with PTFE filters. Information concerning the bulk elemental concentration was provided by energy-dispersive X-ray fluorescence. Enrichment factor analysis indicated that S, Cl, K, Cr, Ni, Cu, Zn, As, Cd and Pb were highly enriched relative to their crustal ratios (to Al). Principal component analysis was used to get some insight about the sources of the elements. Principal component 1 (PC1) explained 30.5% of data variance. The elements that had high loading (>0.7) were: S, Cr, As, and Pb;these are associated with combustion of fossil fuels. In principal component 2 (PC2), Cl, Cu, Zn, and Cd showed high loadings;these elements are associated with biomass burning. The Ni concentration found is three times larger than the threshold of risk for lung cancer, as recommended by the World Health Organization.
基金Supported by Knowledge Innovation Project of Chinese Academy of Sciences (KJCX3.SYW.N3) National Natural Science Foundation of China (10775172, 10675159)performance under approval of Photon Factory (PF) Program Advisory Committee(Proposal No.2007G502)
文摘In order to further understand the sources of PM2.5 in Shanghai air, the synchrotron X-ray fluores- cence microprobe at the BL-4A Beamline of Photon Factory of High Energy Accelerator Research Organization, Japan, was applied to analyze the individual PM2.5 particles collected from Shanghai air in the winter of 2007. Eight categories of emission sources were recognized in these individual particles. The source identification shows that most of the analyzed PM2.5 particles are derived from vehicle exhaust and metallurgical emissions. This suggests that the important emission sources of PM2.5 in Shanghai air would be vehicle exhaust and metallurgical activities.
基金supported in a part by Chinese National Key Project of Basic Research (No G2000048703)the Grant-in-Aid for Scientific Research (No 16310008,18403002) from the Ministry of Education, Culture,Sports, Science and Technology, Japan
文摘Recent observations of Asian dust storms show an eastern expansion of the source area to degraded lands, where dust emissions have been little studied. The dust concentrations over the saline land of the western Songnen Plain (SSL), Northeastern China, are circumstantially higher than those from the northwestern Chinese deserts. These concentrations are sensitive to the surface soil conditions and wind velocity on the ground. The dust samples collected during dust storm events on the SSL contain abundant Na, Mg, A1, K, Ca, Fe and Ti, as well as toxic elements such as Cu, V, Zn and Ba. Individual particle analysis reveals that fine saline particles (〈 10 μm in diameter) on the saline land, consisting largely of carbonate, halite and sulfate together with lithogenic minerals such as SiO2 and aluminosilicate, are eventually uplifted during the interval from spring to autuum. The predominantly fine saline particles uplifted from the SSL are likely transported eastward by the winter monsoon circulation and westerlies. Recent degradation of saline lands in Northeastern China would not only increase the frequency of dust storm events in the downwind area, but also might change the chemical composition of the Asian dust emissions.