The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Si...The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Since the opera tion of the CRCOP(line 2)began in 2018,ponding has appeared on both sides of the pipeline.If there is no drainage,ponding can hardly dissipate,due to the low permeability of the permafrost layer.With the supply of surface flow and the transportation of oil at positive temperatures,ponding promotes an increase in temperature and changes the boundary ther mal conditions of the pipeline.Meanwhile,when the ponding freezes and thaws,frost heave threatens operational safety of the pipeline.Furthermore,the ponding can affect the thermal condition of line 1.In this paper,the distribution of pond ing along the CRCOP was obtained by field investigation.The type and cause of ponding were summarized,and the catch ment and stream order were extracted by the Digital Elevation Model(DEM).According to the statistical results in attri butes for topographic factors,it is known that ponding along the pipeline is relative to elevation,slope,aspect,and the Topographic Wetness Index(TWI).Water easily accumulates at altitudes of 300450 m,slopes within 3°5°,aspect in the northeast or south,TWI within 1316,flow direction in north east south,and flow length within 90150 km.This paper proposes a theoretical basis for the cause and characteristics of ponding along the pipeline.展开更多
[目的]研究基于梯田DEM的地形湿度指数,为深化黄土高原地区土壤水分的研究提供依据。[方法]以黄土高原地区梯田为研究对象,选择5mDEM、基于真实田坎方法构建的1m梯田DEM和基于激光点云数据构建的高精度1 m DEM数据分别对研究样区的地形...[目的]研究基于梯田DEM的地形湿度指数,为深化黄土高原地区土壤水分的研究提供依据。[方法]以黄土高原地区梯田为研究对象,选择5mDEM、基于真实田坎方法构建的1m梯田DEM和基于激光点云数据构建的高精度1 m DEM数据分别对研究样区的地形湿度指数进行表达并作对比分析。[结果]3种不同梯田DEM数据对地形湿度指数的表达有显著差异。(1)5m DEM数据仅能表现出地形湿度指数的宏观分布特征,不具备梯田地形特征信息;(2)基于真实田坎方法构建的1m梯田DEM能较准确细致地实现对梯田样区地形湿度指数的表达,梯田田面和田坎特征分布明显。但与高精度1 m DEM相比,在单个田面和田坎内部地形湿度指数定量表达有所偏差。[结论]基于真实田坎方法构建出的梯田DEM可以更加准确地表达出梯田区域的地形湿度指数分布特征,但与真实地形相比,在田面和田坎内部的表达上仍然有所偏差,其构建方法需要进一步改进。展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2003020102)the National Natural Science Foundation of China (No. 41630636 and No. 41772325)the China Postdoctoral Science Foundation (No. 2019M653797)
文摘The original landform along the China Russia Crude Oil Pipeline(CRCOP,line 2)was disturbed during installation of pavement for the pipeline.Forest and vegetation coverage is dense,and runoff develops along the pipe.Since the opera tion of the CRCOP(line 2)began in 2018,ponding has appeared on both sides of the pipeline.If there is no drainage,ponding can hardly dissipate,due to the low permeability of the permafrost layer.With the supply of surface flow and the transportation of oil at positive temperatures,ponding promotes an increase in temperature and changes the boundary ther mal conditions of the pipeline.Meanwhile,when the ponding freezes and thaws,frost heave threatens operational safety of the pipeline.Furthermore,the ponding can affect the thermal condition of line 1.In this paper,the distribution of pond ing along the CRCOP was obtained by field investigation.The type and cause of ponding were summarized,and the catch ment and stream order were extracted by the Digital Elevation Model(DEM).According to the statistical results in attri butes for topographic factors,it is known that ponding along the pipeline is relative to elevation,slope,aspect,and the Topographic Wetness Index(TWI).Water easily accumulates at altitudes of 300450 m,slopes within 3°5°,aspect in the northeast or south,TWI within 1316,flow direction in north east south,and flow length within 90150 km.This paper proposes a theoretical basis for the cause and characteristics of ponding along the pipeline.
文摘[目的]研究基于梯田DEM的地形湿度指数,为深化黄土高原地区土壤水分的研究提供依据。[方法]以黄土高原地区梯田为研究对象,选择5mDEM、基于真实田坎方法构建的1m梯田DEM和基于激光点云数据构建的高精度1 m DEM数据分别对研究样区的地形湿度指数进行表达并作对比分析。[结果]3种不同梯田DEM数据对地形湿度指数的表达有显著差异。(1)5m DEM数据仅能表现出地形湿度指数的宏观分布特征,不具备梯田地形特征信息;(2)基于真实田坎方法构建的1m梯田DEM能较准确细致地实现对梯田样区地形湿度指数的表达,梯田田面和田坎特征分布明显。但与高精度1 m DEM相比,在单个田面和田坎内部地形湿度指数定量表达有所偏差。[结论]基于真实田坎方法构建出的梯田DEM可以更加准确地表达出梯田区域的地形湿度指数分布特征,但与真实地形相比,在田面和田坎内部的表达上仍然有所偏差,其构建方法需要进一步改进。