It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G ...It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.展开更多
In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a...In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a for all vertices x in G. In this paper, we continue to discuss these degree conditions for admitting fractional factor in the setting that several vertices and edges are removed and there is a difference Δ between g(x) and f(x) for every vertex x in G. These obtained new degree conditions reformulate Gao’s previous conclusions, and show how Δ acts in the results. Furthermore,counterexamples are structured to reveal the sharpness of degree conditions in the setting f(x) =g(x) + Δ.展开更多
基金Project supported by NSFC(10371112)NSFHN (0411011200)SRF for ROCS,SEM
文摘It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.
基金Supported by NSFC(Grant Nos.11761083,11771402 and 11671053)Fundacion Seneca(Spain)(Grant No.20783/PI/18)Ministry of Science,Innovation and Universities(Spain)(Grant No.PGC2018-097198-B-100)。
文摘In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a for all vertices x in G. In this paper, we continue to discuss these degree conditions for admitting fractional factor in the setting that several vertices and edges are removed and there is a difference Δ between g(x) and f(x) for every vertex x in G. These obtained new degree conditions reformulate Gao’s previous conclusions, and show how Δ acts in the results. Furthermore,counterexamples are structured to reveal the sharpness of degree conditions in the setting f(x) =g(x) + Δ.