It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G ...It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.展开更多
A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is t...A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.展开更多
基金Project supported by NSFC(10371112)NSFHN (0411011200)SRF for ROCS,SEM
文摘It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.
基金Project(217/s/458)supported by Azarbaijan Shahid Madani University,Iran
文摘A statistical signal processing technique was proposed and verified as independent component analysis(ICA) for fault detection and diagnosis of industrial systems without exact and detailed model.Actually,the aim is to utilize system as a black box.The system studied is condenser system of one of MAPNA's power plants.At first,principal component analysis(PCA) approach was applied to reduce the dimensionality of the real acquired data set and to identify the essential and useful ones.Then,the fault sources were diagnosed by ICA technique.The results show that ICA approach is valid and effective for faults detection and diagnosis even in noisy states,and it can distinguish main factors of abnormality among many diverse parts of a power plant's condenser system.This selectivity problem is left unsolved in many plants,because the main factors often become unnoticed by fault expansion through other parts of the plants.