Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result sh...Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys.展开更多
Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ...Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.展开更多
Plastic deformation bonding(PDB)has emerged as a promising solid state bonding technique with limited risk of phase transformations and residual thermal stresses in the joint.In this study,the PDB behavior of IN718 su...Plastic deformation bonding(PDB)has emerged as a promising solid state bonding technique with limited risk of phase transformations and residual thermal stresses in the joint.In this study,the PDB behavior of IN718 superalloy was systematically investigated by performing a series of isothermal compression tests at various processing conditions.It was revealed that,with increasing PDB strain rate at 1000?C,different extents of dynamic recrystallization(DRX)occur in the bonding area of IN718 joints.The extent of DRX,average size of DRXed grains,and a newly proposed"interfacial bonding ratio(?Bonding)"parameter(to quantify the bond quality)were initially reduced with increase in the strain rate up to 0.1 s-1 and later increased at further higher strain rates.Electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM)based interfacial microstructure analyses indicated that the quality of the bonded joints is closely related with the development of fine DRXed grains at the bonding interface with the increasing strain,which promotes adiabatic temperature rise.It was revealed that the initial bulging and subsequent migration of the original interfacial grain boundary(IGB)were the main mechanisms promoting DRX in the well bonded IN718 superalloy joints.Moreover,the mechanical properties of the bonded joints were not only controlled by the recrystallized microstructure but also depended upon the Bonding parameter of the joints.展开更多
The microstructure and composition of the residual liquid at different temperatures were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX) associated with the Thermo...The microstructure and composition of the residual liquid at different temperatures were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX) associated with the Thermo-calc software calculation of the equilibrium phase diagrams of Inconel 718 and segregated liquid. The liquid density difference and Rayleigh number variation during solidification were estimated as well. It is found that the heavy segregation of Nb in liquid prompts the precipitation of δ and Laves phase directly from liquid and the resultant quenched liquid microstructure consists of pro-eutectic γ+eutectic,or complete eutectic according to the content of Nb from low to high. The liquid density increases with decreasing temperature during the solidification of Inconel 718 and the liquid density difference is positive. The largest relative Rayleigh number occurs at 1320°C when the liquid fraction is about 40vol%.展开更多
基金Project (08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology,China
文摘Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys.
基金Project(51341004)supported by the National Natural Science Foundation of ChinaProject(S050ITP7005)supported by the Shanghai Jiao Tong University Undergraduate Innovative Practice Program,China
文摘Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.
基金supported by the National Key Research and Development Program[grant number 2018YFA0702900]the National Natural Science Foundation of China[grant numbers U1508215,51774265]+2 种基金the National Science and Technology Major Project of China[Grant No.2019ZX06004010]the Key Program of the Chinese Academy of Sciences[grant number ZDRW-CN-20171]Program of CAS Interdisciplinary Innovation Team.
文摘Plastic deformation bonding(PDB)has emerged as a promising solid state bonding technique with limited risk of phase transformations and residual thermal stresses in the joint.In this study,the PDB behavior of IN718 superalloy was systematically investigated by performing a series of isothermal compression tests at various processing conditions.It was revealed that,with increasing PDB strain rate at 1000?C,different extents of dynamic recrystallization(DRX)occur in the bonding area of IN718 joints.The extent of DRX,average size of DRXed grains,and a newly proposed"interfacial bonding ratio(?Bonding)"parameter(to quantify the bond quality)were initially reduced with increase in the strain rate up to 0.1 s-1 and later increased at further higher strain rates.Electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM)based interfacial microstructure analyses indicated that the quality of the bonded joints is closely related with the development of fine DRXed grains at the bonding interface with the increasing strain,which promotes adiabatic temperature rise.It was revealed that the initial bulging and subsequent migration of the original interfacial grain boundary(IGB)were the main mechanisms promoting DRX in the well bonded IN718 superalloy joints.Moreover,the mechanical properties of the bonded joints were not only controlled by the recrystallized microstructure but also depended upon the Bonding parameter of the joints.
文摘The microstructure and composition of the residual liquid at different temperatures were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX) associated with the Thermo-calc software calculation of the equilibrium phase diagrams of Inconel 718 and segregated liquid. The liquid density difference and Rayleigh number variation during solidification were estimated as well. It is found that the heavy segregation of Nb in liquid prompts the precipitation of δ and Laves phase directly from liquid and the resultant quenched liquid microstructure consists of pro-eutectic γ+eutectic,or complete eutectic according to the content of Nb from low to high. The liquid density increases with decreasing temperature during the solidification of Inconel 718 and the liquid density difference is positive. The largest relative Rayleigh number occurs at 1320°C when the liquid fraction is about 40vol%.