对于小样本集合的遥感影像场景分类问题,采取了一种基于迁移学习的卷积神经网络高分辨率遥感影像识别方法,通过深度卷积神经网络Inception-v4在ImageNet上训练,得到预训练模型以及相应的初始化参数,随后将小样本遥感数据按比例划分注入...对于小样本集合的遥感影像场景分类问题,采取了一种基于迁移学习的卷积神经网络高分辨率遥感影像识别方法,通过深度卷积神经网络Inception-v4在ImageNet上训练,得到预训练模型以及相应的初始化参数,随后将小样本遥感数据按比例划分注入预训练模型当中,根据样本集合特征,不断调整网络参数以便获得最佳识别分类模型.最后将本文的方法与现有的场景分类方法进行实验对比,测得该方法在UC merced land use场景影像数据集上取得97.92%的准确率,有效提高了高分影像场景分类精度.展开更多
针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特...针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特征提取,在增加网络宽度的同时减少YOLOv3网络的循环次数。同时,YOLOv3算法对于anchor box的选取方式使用Meanshift(均值漂移)聚类算法与K-means聚类算法相结合的方式进行改进,解决了K值需要人为测定的问题。改进的YOLOv3算法在自制数据集进行对比实验,实验结果表明:改进YOLOv3算法的mAP(Mean Average Precision)值要高于YOLOv3算法10%,在识别速度上提高了9%,在充分满足实时识别的同时提高了对中小目标识别的准确率。展开更多
文摘对于小样本集合的遥感影像场景分类问题,采取了一种基于迁移学习的卷积神经网络高分辨率遥感影像识别方法,通过深度卷积神经网络Inception-v4在ImageNet上训练,得到预训练模型以及相应的初始化参数,随后将小样本遥感数据按比例划分注入预训练模型当中,根据样本集合特征,不断调整网络参数以便获得最佳识别分类模型.最后将本文的方法与现有的场景分类方法进行实验对比,测得该方法在UC merced land use场景影像数据集上取得97.92%的准确率,有效提高了高分影像场景分类精度.
文摘针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特征提取,在增加网络宽度的同时减少YOLOv3网络的循环次数。同时,YOLOv3算法对于anchor box的选取方式使用Meanshift(均值漂移)聚类算法与K-means聚类算法相结合的方式进行改进,解决了K值需要人为测定的问题。改进的YOLOv3算法在自制数据集进行对比实验,实验结果表明:改进YOLOv3算法的mAP(Mean Average Precision)值要高于YOLOv3算法10%,在识别速度上提高了9%,在充分满足实时识别的同时提高了对中小目标识别的准确率。