Single-photon detectors(SPDs)are the most sensitive instruments for light detection.In the near-infrared range,SPDs based on III–V compound semiconductor avalanche photodiodes have been extensively used during the pa...Single-photon detectors(SPDs)are the most sensitive instruments for light detection.In the near-infrared range,SPDs based on III–V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size,low cost and easy operation.In the past decade,the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques.This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications,and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes.Future perspectives of both the devices and quenching techniques are summarized.展开更多
Avalanche-photodiode-based near-infrared single-photon detectors have seen rapid development in the last two decades because of their enormous internal gain,high sensitivity,fast response,small vol-ume,and ease of int...Avalanche-photodiode-based near-infrared single-photon detectors have seen rapid development in the last two decades because of their enormous internal gain,high sensitivity,fast response,small vol-ume,and ease of integration.The InGaAs/InP near-infrared single-photon detector is the most widely used avalanche diode at present.Its device performance is still being continuously improved through the optimization of device structure and external quenching circuits.This paper analyzes the latest development and application of these InGaAs/InP photodiodes,then briefly re views other near-infrared single-photon detection technologies based on new materials and new mechanisms.展开更多
A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common ...A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.展开更多
Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP si...Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well(QW)nanowire array light emitting diodes(LEDs)with multi-wavelength and high-speed operations.Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of~1.35 and~1.55μm,respectively,ideal for low-loss optical communications.As a result of simultaneous contributions from both axial and radial QWs,broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of~17μW.A large spectral blueshift is observed with the increase of applied bias,which is ascribed to the band-filling effect based on device simulation,and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range.Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate,leading to QW formation with different emission wavelengths.Furthermore,high-speed GHz-level modulation and small pixel size LED are demonstrated,showing the promise for ultrafast operation and ultracompact integration.The voltage and pitch size controlled multi-wavelength highspeed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.展开更多
Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to ...Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.展开更多
基金We acknowledge Wen-Hao Jiang for technical assistance.This work has been financially supported by the National Basic Research Program of China(Grant No.2013CB336800)the National High-Tech R&D Program(Grant No.2011AA010802)+1 种基金the National Natural Science Foundation of China(Grant No.61275121)the Innovative Cross-disciplinary Team Program of CAS.HZ acknowledges the financial support from the Swiss NCCR QSIT.
文摘Single-photon detectors(SPDs)are the most sensitive instruments for light detection.In the near-infrared range,SPDs based on III–V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size,low cost and easy operation.In the past decade,the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques.This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications,and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes.Future perspectives of both the devices and quenching techniques are summarized.
基金supported by the Major Science and Technology Project of Yunnan province(Grant No.2018ZI002)。
文摘Avalanche-photodiode-based near-infrared single-photon detectors have seen rapid development in the last two decades because of their enormous internal gain,high sensitivity,fast response,small vol-ume,and ease of integration.The InGaAs/InP near-infrared single-photon detector is the most widely used avalanche diode at present.Its device performance is still being continuously improved through the optimization of device structure and external quenching circuits.This paper analyzes the latest development and application of these InGaAs/InP photodiodes,then briefly re views other near-infrared single-photon detection technologies based on new materials and new mechanisms.
基金Supported by the National Basic Research Program of China under Grant No 2011CB301900the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BY2013077
文摘A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.
文摘Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems.Here,we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well(QW)nanowire array light emitting diodes(LEDs)with multi-wavelength and high-speed operations.Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of~1.35 and~1.55μm,respectively,ideal for low-loss optical communications.As a result of simultaneous contributions from both axial and radial QWs,broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of~17μW.A large spectral blueshift is observed with the increase of applied bias,which is ascribed to the band-filling effect based on device simulation,and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range.Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate,leading to QW formation with different emission wavelengths.Furthermore,high-speed GHz-level modulation and small pixel size LED are demonstrated,showing the promise for ultrafast operation and ultracompact integration.The voltage and pitch size controlled multi-wavelength highspeed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.
基金financially supported by the following projects:Open project of SITP(Project Number:IIMDKFJJ-18-09)National Natural Science Foundation of China(Project Number:61927820)+2 种基金The STCSM2019-11-20 funding(Project Number:19142202700)National Natural Science Foundation of China(Project Number:NSF No.U1732104)Zhejiang Lab’s International Talent Fund for Young Professionals。
文摘Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.