Molecular beam epitaxy growth of a bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on...Molecular beam epitaxy growth of a bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on the optical properties and morphologies of the bilayer quantum dot(BQD) structures is discussed.By optimizing the growth parameters,InAs BQD emission at 1.436μm at room temperature with a narrower FWHM of 27 meV was demonstrated.The density of QDs in the second layer is around 9×10~9 to 1.4×10^(10) cm^(-2). The BQD structure provides a useful way to extend the emission wavelength of GaAs-based material for quantum functional devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10734060,90921015)the National Basic Research Program of China(Nos.2007CB936304,2010CB327601)
文摘Molecular beam epitaxy growth of a bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on the optical properties and morphologies of the bilayer quantum dot(BQD) structures is discussed.By optimizing the growth parameters,InAs BQD emission at 1.436μm at room temperature with a narrower FWHM of 27 meV was demonstrated.The density of QDs in the second layer is around 9×10~9 to 1.4×10^(10) cm^(-2). The BQD structure provides a useful way to extend the emission wavelength of GaAs-based material for quantum functional devices.