Objective: Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD)...Objective: Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. Data Sources: We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of"hypertension", "cerebral small vessel disease", "'white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Study Selection: Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. Results: In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflarnmator3, reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. Conclusions: We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the nunabers, volumes, and 展开更多
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应...解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。展开更多
Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed ...Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management.展开更多
AIM: To investigate the expression levels of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), vascular endothelial growth factor receptor-3 (VEGFR-3) and CD44 genes and the relationship between their lev- ...AIM: To investigate the expression levels of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), vascular endothelial growth factor receptor-3 (VEGFR-3) and CD44 genes and the relationship between their lev- els and clinicopathological parameters in gastric cancer.METHODS: Tissue samples were obtained from 33 patients (8 females) with gastric cancer. mRNA levels of LYVE-1, VEGFR-3 and CD44 in normal and tumor tissues were quantitatively measured using real time polymerase chain reaction. The results were correlated with lymph node metastasis, histological type and differentiation of the tumor, T-stage, and presence of vascular, perineural and lymphatic invasions. The distribution of molecules in the tissue was evaluated using immunohistochemistry. RESULTS: LYVE-1, CD44 and VEGFR-3 gene expression levels were significantly higher in gastric cancer than in normal tissue. While there was no correlation between gene expressions and clinicopathologic fea- tures such as histologic type, differentiation and stage, gene expression levels were found to be increased in conjunction with positive lymph node/total lymph node ratio and the presence of perineural invasion. A significant correlation was also found between LYVE-1 and CD44 over-expressions and perineural invasion and lymph node positivity in gastric cancers. When the dis- tribution of LYVE-1 antibody-stained lymphatic vessels in tissue was evaluated, lymphatic vessels were located intra-tumorally in 13% and peri-tumorally in 27% of the patients. Moreover, lymph node metastases were also positive in all patients with LYVE-1-staining. CONCLUSION: LYVE-1, VEGFR-3 and CD44 all play an important role in lymphangiogenesis, invasion and metastasis. LYVE-1 is a perfectly reliable lymphatic vessel marker and useful for immunohistochemistry.展开更多
AIM: To investigate whether microvessel density (MVD) is related with prognosis in gastric cancer patients, and the expression of cyclooxygenase-2 (COX-2) and vessel endothelial growth factor (VEGF) so as to determine...AIM: To investigate whether microvessel density (MVD) is related with prognosis in gastric cancer patients, and the expression of cyclooxygenase-2 (COX-2) and vessel endothelial growth factor (VEGF) so as to determine the possible role of COX-2 and VEGF in gastric cancer angiogenesis.METHODS: Forty-seven formalin-fixed paraffin-embedded tissue samples of gastric cancer were evaluated for COX-2, VEGF by immunohitochemical staining. To assess tumor angiogenesis, MVD was determined by immunohitochemical staining of endothelial protein factor Ⅷ-related antigen. The relationship among COX-2 and VEGF expression, MVD, and clinicopathologic parameters was analyzed. RESULTS: Among the 67 samples, high MVD was significantly associated with lymph node metastasis and poor survival. Multivariate survival analysis showed that MVD value and lymph node metastasis were independent prognostic factors. The expression rate of COX-2 and VEGF was significantly higher than that of the adjacent tissues. COX-2 and VEGF expression in gastric cancer was significantly correlated with tumor differentiation and depth of invasion, but not with survival. The mean MVD value of COX-2 or VEGF positive tumors was higher than that of COX-2 or VEGF negative tumors. A significant correlation was found between the expressions of COX-2and VEGF. CONCLUSION: MVD may be one of the important prognostic factors for gastric cancer patients. COX-2 and VEGF may play an important role in tumor progression by stimulating angiogenesis. VEGF might play a main role in the COX-2 angiogenic pathway. The inhibition of angiogenesis or COX-2, VEGF activity may have an important therapeutic benefit in the control of gastric cancer.展开更多
Endothelial cells (TEC_3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × 10~6 smooth muscle cells (...Endothelial cells (TEC_3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × 10~6 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC_3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.展开更多
文摘Objective: Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. Data Sources: We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of"hypertension", "cerebral small vessel disease", "'white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Study Selection: Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. Results: In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflarnmator3, reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. Conclusions: We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the nunabers, volumes, and
文摘解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象,系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明:(1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶,盐胁迫下根系生长和根尖数显著受到抑制,根木质部易于发生栓塞,导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定,轻度(0.05 mol·L–1 Na Cl)和中度(0.15 mol·L–1 Na Cl)盐胁迫下,胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率,维持植物正常生长;重度(0.30 mol·L–1 Na Cl)盐胁迫下,胡杨茎木质部导管输水有效性和安全性均明显降低,木质部导水率显著下降,并伴随叶片气孔导度的显著降低,从而严重抑制了胡杨的光合和生长。
文摘Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management.
基金Supported by TUBTAK-SBAG (Project Number 104S581)the Turkish Academy of Sciences (TUBA)
文摘AIM: To investigate the expression levels of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), vascular endothelial growth factor receptor-3 (VEGFR-3) and CD44 genes and the relationship between their lev- els and clinicopathological parameters in gastric cancer.METHODS: Tissue samples were obtained from 33 patients (8 females) with gastric cancer. mRNA levels of LYVE-1, VEGFR-3 and CD44 in normal and tumor tissues were quantitatively measured using real time polymerase chain reaction. The results were correlated with lymph node metastasis, histological type and differentiation of the tumor, T-stage, and presence of vascular, perineural and lymphatic invasions. The distribution of molecules in the tissue was evaluated using immunohistochemistry. RESULTS: LYVE-1, CD44 and VEGFR-3 gene expression levels were significantly higher in gastric cancer than in normal tissue. While there was no correlation between gene expressions and clinicopathologic fea- tures such as histologic type, differentiation and stage, gene expression levels were found to be increased in conjunction with positive lymph node/total lymph node ratio and the presence of perineural invasion. A significant correlation was also found between LYVE-1 and CD44 over-expressions and perineural invasion and lymph node positivity in gastric cancers. When the dis- tribution of LYVE-1 antibody-stained lymphatic vessels in tissue was evaluated, lymphatic vessels were located intra-tumorally in 13% and peri-tumorally in 27% of the patients. Moreover, lymph node metastases were also positive in all patients with LYVE-1-staining. CONCLUSION: LYVE-1, VEGFR-3 and CD44 all play an important role in lymphangiogenesis, invasion and metastasis. LYVE-1 is a perfectly reliable lymphatic vessel marker and useful for immunohistochemistry.
基金Supported by the Major State Basic Research Development Program (973 Program) of China (No. 2003CB515507) and Science and Technology Fund by Department of Education of Anhui Province
文摘AIM: To investigate whether microvessel density (MVD) is related with prognosis in gastric cancer patients, and the expression of cyclooxygenase-2 (COX-2) and vessel endothelial growth factor (VEGF) so as to determine the possible role of COX-2 and VEGF in gastric cancer angiogenesis.METHODS: Forty-seven formalin-fixed paraffin-embedded tissue samples of gastric cancer were evaluated for COX-2, VEGF by immunohitochemical staining. To assess tumor angiogenesis, MVD was determined by immunohitochemical staining of endothelial protein factor Ⅷ-related antigen. The relationship among COX-2 and VEGF expression, MVD, and clinicopathologic parameters was analyzed. RESULTS: Among the 67 samples, high MVD was significantly associated with lymph node metastasis and poor survival. Multivariate survival analysis showed that MVD value and lymph node metastasis were independent prognostic factors. The expression rate of COX-2 and VEGF was significantly higher than that of the adjacent tissues. COX-2 and VEGF expression in gastric cancer was significantly correlated with tumor differentiation and depth of invasion, but not with survival. The mean MVD value of COX-2 or VEGF positive tumors was higher than that of COX-2 or VEGF negative tumors. A significant correlation was found between the expressions of COX-2and VEGF. CONCLUSION: MVD may be one of the important prognostic factors for gastric cancer patients. COX-2 and VEGF may play an important role in tumor progression by stimulating angiogenesis. VEGF might play a main role in the COX-2 angiogenic pathway. The inhibition of angiogenesis or COX-2, VEGF activity may have an important therapeutic benefit in the control of gastric cancer.
基金supported by the national“973”tissue engineering project of China(G1999054300)Shanghai Science and Technology Development Foundation(03DJ14021)
文摘Endothelial cells (TEC_3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × 10~6 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC_3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.