Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-dev...Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.展开更多
In this paper, a suitable local coordinate system is constructed by using exponential dichotomies and generalizing the Floquet method from periodic systems to nonperiodic systems. Then the Poincare map is established ...In this paper, a suitable local coordinate system is constructed by using exponential dichotomies and generalizing the Floquet method from periodic systems to nonperiodic systems. Then the Poincare map is established to solve various problems in homoclinic bifurcations with codimension one or two. Bifurcation diagrams and bifurcation curves are given.展开更多
Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this st...Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation.Precise Point Positioning(PPP) for geodetic users and real-time positioning for common navigation users are utilized.To evaluate PPP accuracy,coordinate time series repeatability and discrepancies with GPS' precise positioning are computed.Experiments show that COMPASS PPP repeatability for the east,north and up components of a receiver within China's Mainland is better than 2 cm,2 cm and 5 cm,respectively.Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning,indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems.For common positioning users,COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users.Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m(RMS),respectively,which may be improved to about 3 m and 4 m(RMS) with the addition of differential corrections.Less accurate Signal In Space User Ranging Error(SIS URE) and Geometric Dilution of Precision(GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS.Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP,the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE,or both.展开更多
The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang...The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the track展开更多
The quality of the satellite orbit determination is rested on the knowledge of per-turbing forces acting on the satellite and stochastic properties of the observations, and the ability of controlling various kinds of ...The quality of the satellite orbit determination is rested on the knowledge of per-turbing forces acting on the satellite and stochastic properties of the observations, and the ability of controlling various kinds of errors. After a brief discussion on the dynamic and geometric orbit determinations, Sage adaptive filtering and robust filtering are reviewed. A new synthetically adaptive robust filtering based on a combination of robust filtering and Sage filtering is devel-oped.It is shown, by derivations and calculations, that the synthetically adaptive robust filtering for orbit determination is not only robust but also simple in calculation. It controls the effects of the outliers of tracking observations and the satellite dynamical disturbance on the parameter esti-mates of the satellite orbit.展开更多
A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value desig...A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.展开更多
The degenerated homoclinic bifurcation for high dimensional system is considered. The existence, uniqueness, and incoexistence of the 1-homclinic orbit and 1-periodic orbit near Г are studied under the nonresonant c...The degenerated homoclinic bifurcation for high dimensional system is considered. The existence, uniqueness, and incoexistence of the 1-homclinic orbit and 1-periodic orbit near Г are studied under the nonresonant condition. Complicated bifurcation pattern is described under the resonant condition.展开更多
Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at mo...Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.展开更多
文摘Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.
文摘In this paper, a suitable local coordinate system is constructed by using exponential dichotomies and generalizing the Floquet method from periodic systems to nonperiodic systems. Then the Poincare map is established to solve various problems in homoclinic bifurcations with codimension one or two. Bifurcation diagrams and bifurcation curves are given.
基金supported by the Shanghai Committee of Science and Technology(Grant No.11ZR1443500)the National Natural Sciences Foundation of China(Grant Nos.11033004 and 11203009)China Satellite Navigation Conference(Grant No.CSNC2011-QY-01)
文摘Determined to become a new member of the well-established GNSS family,COMPASS(or BeiDou-2) is developing its capabilities to provide high accuracy positioning services.Two positioning modes are investigated in this study to assess the positioning accuracy of COMPASS' 4GEO/5IGSO/2MEO constellation.Precise Point Positioning(PPP) for geodetic users and real-time positioning for common navigation users are utilized.To evaluate PPP accuracy,coordinate time series repeatability and discrepancies with GPS' precise positioning are computed.Experiments show that COMPASS PPP repeatability for the east,north and up components of a receiver within China's Mainland is better than 2 cm,2 cm and 5 cm,respectively.Apparent systematic offsets of several centimeters exist between COMPASS precise positioning and GPS precise positioning,indicating errors remaining in the treatments of COMPASS measurement and dynamic models and reference frame differences existing between two systems.For common positioning users,COMPASS provides both open and authorized services with rapid differential corrections and integrity information available to authorized users.Our assessment shows that in open service positioning accuracy of dual-frequency and single-frequency users is about 5 m and 6 m(RMS),respectively,which may be improved to about 3 m and 4 m(RMS) with the addition of differential corrections.Less accurate Signal In Space User Ranging Error(SIS URE) and Geometric Dilution of Precision(GDOP) contribute to the relatively inferior accuracy of COMPASS as compared to GPS.Since the deployment of the remaining 1 GEO and 2 MEO is not able to significantly improve GDOP,the performance gap could only be overcome either by the use of differential corrections or improvement of the SIS URE,or both.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10703011 and11073047)the Science and Technology Commission of Shanghai (GrantNo. 06DZ22101)the National High Technology Research and Development Program of China (Grant No. 2010AA122202)
文摘The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the track
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 40274002 and 40174009) the National Science Foundation for the Outstanding Youth in China (Grant No. 49825107).
文摘The quality of the satellite orbit determination is rested on the knowledge of per-turbing forces acting on the satellite and stochastic properties of the observations, and the ability of controlling various kinds of errors. After a brief discussion on the dynamic and geometric orbit determinations, Sage adaptive filtering and robust filtering are reviewed. A new synthetically adaptive robust filtering based on a combination of robust filtering and Sage filtering is devel-oped.It is shown, by derivations and calculations, that the synthetically adaptive robust filtering for orbit determination is not only robust but also simple in calculation. It controls the effects of the outliers of tracking observations and the satellite dynamical disturbance on the parameter esti-mates of the satellite orbit.
基金supported by the National Natural Science Foundation of China (Grant No.10902121)
文摘A circumlunar free return orbit design model that satisfies manned lunar mission constraints is established. By combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed. A simulation example is given,and the conclusion indicates that the method has excellent convergence performance and precision. According to a great deal of simulation results solved by the method,the free return orbit characters such as accessible moon orbit parameters,return orbit parameters,transfer delta velocity,etc. are analyzed,which can supply references to constitute manned lunar mission orbit scheme.
基金National Natural Science Foundation of China!(No. 19771037)
文摘The degenerated homoclinic bifurcation for high dimensional system is considered. The existence, uniqueness, and incoexistence of the 1-homclinic orbit and 1-periodic orbit near Г are studied under the nonresonant condition. Complicated bifurcation pattern is described under the resonant condition.
文摘Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.