Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential...Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential-detector is proposed for impulse radio ultra wideband (IR-UWB) communication systems. The system employs bit-level differential phase shift keying (DPSK) combined with code division (CD) for IR-UWB signals to support multiple-access (MA). It is analyzed under additive white Gaussian noise (AWGN) corrupted by multiple-access interference (MAI) channel. Its BER performance is compared against a reference coherent receiver using Monte-Carlo simulation method. A closed form expression for its average probability of error is derived analytically. Simulation results and theoretical analysis confirm the applicability of the proposed differential-detector for IR-UWB communication systems.展开更多
Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, sever...Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.展开更多
The performance of UWB (ultrawide bandwidth) radio systems under an impulsive noise environment is first investigated. In the analysis, the Middleton's class A model is used as a model of the impulsive noise. At f...The performance of UWB (ultrawide bandwidth) radio systems under an impulsive noise environment is first investigated. In the analysis, the Middleton's class A model is used as a model of the impulsive noise. At first, the statistical characteristics of the inphase and quadrature components of the impulsive noise are investigated, and it is proved that unlike Gaussian noise, these components are dependent especially on the impulsive noise with small impulsive indices. The probability that the high amplitude noise is emitted in the inphase component which becomes firstly larger and then smaller for the larger quadrature component of impulsive noise is presented. Next, the performance of conventional UWB radio systems designed for the Gaussian noise under the impulsive noise is evaluated and numerical results show that the performance of the conventional UWB radio systems is much degraded by the effect of the impulsive noise. Using the dependence between the inphase and quadrature components of the impulsive noise, a novel UWB receiver designed for impulsive noise is proposed and the performance improvement achieved by the receiver is evaluated. Numerical results show that the performance of UWB radio systems is much improved by employing the proposed receiver.展开更多
文摘Noncoherent communication receivers (differential-detectors) have simple design, however, they always incur bit error rate (BER) performance loss up to 3dB compared to coherent receivers. In this paper, a differential-detector is proposed for impulse radio ultra wideband (IR-UWB) communication systems. The system employs bit-level differential phase shift keying (DPSK) combined with code division (CD) for IR-UWB signals to support multiple-access (MA). It is analyzed under additive white Gaussian noise (AWGN) corrupted by multiple-access interference (MAI) channel. Its BER performance is compared against a reference coherent receiver using Monte-Carlo simulation method. A closed form expression for its average probability of error is derived analytically. Simulation results and theoretical analysis confirm the applicability of the proposed differential-detector for IR-UWB communication systems.
文摘Ultrawide bandwidth (UWB) radio, a very promising technique carrying information in very short basic pulses, has properties that make it a viable candidate for short-range wireless communications. In this paper, several short-pulse waveforms based on Gaussian genetic monocycle as well as Gaussian pulse waveform, as candidates of basic UWB pulse waveforms, are firstly proposed and investigated. Their spectrum characteristics, bit transmission rate (BTR), and bit error rate (BER) performance in AWGN channel using time hopping spread spectrum (THSS) and pulse position modulation (PPM) are simulated and evaluated. The numerical results are compared and show that the basic pulse waveforms determine the spectrum characteristics of UWB signals and have much effect on the performance of UWB radio system. The performance of UWB radio system achieved by the proposed basic pulse waveforms is much better than that of UWB radio system realized by other used basic pulse waveforms under the uniform conditions. Also, the polarity of these short basic pulses does not affect the performance of UWB radio system.
文摘The performance of UWB (ultrawide bandwidth) radio systems under an impulsive noise environment is first investigated. In the analysis, the Middleton's class A model is used as a model of the impulsive noise. At first, the statistical characteristics of the inphase and quadrature components of the impulsive noise are investigated, and it is proved that unlike Gaussian noise, these components are dependent especially on the impulsive noise with small impulsive indices. The probability that the high amplitude noise is emitted in the inphase component which becomes firstly larger and then smaller for the larger quadrature component of impulsive noise is presented. Next, the performance of conventional UWB radio systems designed for the Gaussian noise under the impulsive noise is evaluated and numerical results show that the performance of the conventional UWB radio systems is much degraded by the effect of the impulsive noise. Using the dependence between the inphase and quadrature components of the impulsive noise, a novel UWB receiver designed for impulsive noise is proposed and the performance improvement achieved by the receiver is evaluated. Numerical results show that the performance of UWB radio systems is much improved by employing the proposed receiver.