期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多属性评分隐表征学习的群组推荐算法 被引量:1
1
作者 张纯金 郭盛辉 +2 位作者 纪淑娟 杨伟 伊磊 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第12期120-135,共16页
【目的】克服个体用户表征学习受个体用户评分稀疏性影响严重的问题,提高推荐算法的准确率和反应速度。【方法】提出一种基于神经网络的多属性评分隐表征学习方法,并应用该方法从用户群组和项目两个维度学习多属性评分的隐表征,最后分... 【目的】克服个体用户表征学习受个体用户评分稀疏性影响严重的问题,提高推荐算法的准确率和反应速度。【方法】提出一种基于神经网络的多属性评分隐表征学习方法,并应用该方法从用户群组和项目两个维度学习多属性评分的隐表征,最后分别通过用户群组偏好匹配和项目吸引力计算实现两个群组推荐。【结果】基于TripAdvisor数据集的实验结果表明:本文算法的准确率、时间性能优于典型的多属性推荐算法和群组推荐算法;准确率略差于个体推荐算法,但在线和离线运行时间较个性化推荐算法分别至少降低30%和50%;用户群组的隐表征学习相比项目的隐表征学习对推荐性能的提高作用更明显。【局限】由于真实群组数据难以获取,仅基于某种聚类算法生成虚拟群组,因此群组较理想化。虚拟群组的偏好比真实群组的偏好可能更易聚合。【结论】基于神经网络学习群组用户的隐表征(即聚合群组用户的偏好)和项目的隐表征,可以有效提高群组推荐算法和多属性推荐算法的准确率和召回率,效果非常接近最新的个性化推荐算法。 展开更多
关键词 群组推荐算法 多属性评分 隐表征学习 评分矩阵 神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部