This study examined the cytotoxicity of a new implant material modified by microarc oxidation technique. Cells on different surfaces of the implant were evaluated 2, 4 and 6 days after treatment. The results showed th...This study examined the cytotoxicity of a new implant material modified by microarc oxidation technique. Cells on different surfaces of the implant were evaluated 2, 4 and 6 days after treatment. The results showed that cell attachment, cell morphology, and cell proliferation were influenced by the different surface treatments, and a significant increase in the osteoblast cell activity was observed on the porous MAO-Ti coating. Our results suggest that the porous MAO-Ti surface has a better biocompatibility and electrochemical performance than pure titanium surface.展开更多
In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process...In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process, the compound and diffusion layers were formed on the surface. XRD results show that Cr203, a-Co and ε-Co phases diffracted from the modified layers after plasma oxidizing. The untreated and treated CoCrMo samples were subjected to wear tests both in dry and simulated body fluid conditions, and normal loads of 2 N and 10 N were used. For the sliding wear test, alumina balls were used as counter materials. It was observed that the wear resistance of CoCrMo alloy was increased after the plasma oxidizing process. The lowest wear rate was obtained from the samples that were oxidized at 800 ℃ for 5 h. It was detected that both wear environment and load have significant effects on the wear behavior of this alloy, and the wear resistance of oxidized CoCrMo alloy is higher when oxide-based counterface is used. The wear rates of both untreated and plasma oxidized samples increase under high loads.展开更多
基金This project was supported by a grant from the Bureau of Sciences and Technologies of Hubei Provincial Government (No. 4-260).
文摘This study examined the cytotoxicity of a new implant material modified by microarc oxidation technique. Cells on different surfaces of the implant were evaluated 2, 4 and 6 days after treatment. The results showed that cell attachment, cell morphology, and cell proliferation were influenced by the different surface treatments, and a significant increase in the osteoblast cell activity was observed on the porous MAO-Ti coating. Our results suggest that the porous MAO-Ti surface has a better biocompatibility and electrochemical performance than pure titanium surface.
文摘In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process, the compound and diffusion layers were formed on the surface. XRD results show that Cr203, a-Co and ε-Co phases diffracted from the modified layers after plasma oxidizing. The untreated and treated CoCrMo samples were subjected to wear tests both in dry and simulated body fluid conditions, and normal loads of 2 N and 10 N were used. For the sliding wear test, alumina balls were used as counter materials. It was observed that the wear resistance of CoCrMo alloy was increased after the plasma oxidizing process. The lowest wear rate was obtained from the samples that were oxidized at 800 ℃ for 5 h. It was detected that both wear environment and load have significant effects on the wear behavior of this alloy, and the wear resistance of oxidized CoCrMo alloy is higher when oxide-based counterface is used. The wear rates of both untreated and plasma oxidized samples increase under high loads.