The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent ...The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.展开更多
Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the ...Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.展开更多
An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is ...An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter optimization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2°C after 10 min operation, much lower than 112.2°C, which is measured without any active cooling techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, however, it will increase power consumption. Therefore, it should have a trade-off between the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and experiment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34°C, which is close to the value of 32.8°C obtained by surface experiment test. The simulation results also demonstrate that the micro jet device in the present cooling system needs parameter optimization.展开更多
Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Exper...Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.展开更多
Two independent versions of the RNG based k ε turbulence model in conjunction with the law of the wall have been applied to the numerical simulation of an axisymmetric turbulent impinging jet flow field. The two m...Two independent versions of the RNG based k ε turbulence model in conjunction with the law of the wall have been applied to the numerical simulation of an axisymmetric turbulent impinging jet flow field. The two model predictions are compared with those of the standard k ε model and with the experimental data measured by LDV (Laser Doppler Velocimetry). It shows that the original version of the RNG k ε model with the choice of C ε1 =1.063 can not yield good results, among them the predicted turbulent kinetic energy profiles in the vicinity of the stagnation region are even worse than those predicted by the standard k ε model. However, the new version of RNG k ε model behaves well. This is mainly due to the corrections to the constants C ε1 and C ε2 along with a modification of the production term to account for non equilibrium strain rates in the flow.展开更多
采用基于volume of fluid(VOF)方法的计算流体力学二维模型,在考虑表面张力及壁面黏附的情况下,研究水滴在撞击浸润性不同的倾斜表面的铺展过程。结果表明,不同的壁面润湿特性对液滴铺展的影响存在差异。计算所得结果与实验测量值相吻合...采用基于volume of fluid(VOF)方法的计算流体力学二维模型,在考虑表面张力及壁面黏附的情况下,研究水滴在撞击浸润性不同的倾斜表面的铺展过程。结果表明,不同的壁面润湿特性对液滴铺展的影响存在差异。计算所得结果与实验测量值相吻合,表明了VOF方法研究液滴碰撞的可行性。展开更多
To investigate the flow and heat transfer characteristics of a synthetic jet driven by piezoelectric actuator, experimental investigation utilizing particle image veloci- metry, hot-wire anemometer and infrared camera...To investigate the flow and heat transfer characteristics of a synthetic jet driven by piezoelectric actuator, experimental investigation utilizing particle image veloci- metry, hot-wire anemometer and infrared camera was carried out. The results show that: (1) At the jet orifice exit, pairs of vortexes are generated, broken down and merged together periodically, forming a steady jet within a several slot width from distance near the orifice exit. And during the development, the synthetic jet spreads rapidly along the minor axis direction of the orifice. While along the major axis direction, the synthetic jet contracts firstly and then spreads slowly. (2) Exci- tation frequency forced on the actuator has a great effect on the synthetic jet flow field. There are two resonance frequencies at which the mean velocity and vorticity of the synthetic jet are maximized, especially at the higher resonance frequency. The resonance frequency values obtained by the experiment are lower than the theoretical values. (3) Similarly to the common jet impingement, the convective heat transfer coefficients at the target surface impinged by the synthetic jet also take on up-down tendency varying with the jet-to-surface spacing increment. But the jet-to-surface spacing ratio for optimum cooling achievement is greater and the cooling action region is wider than the former, indicating that the synthetic jet in- troduces a stronger entrainment and more vigorous penetration in the surrounding fluid.展开更多
The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear lay...The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear layer vortices close to the jet nozzle and the scarf vortex in the near-wall zone in good agreement with the experimental observations. Different vortical modes in the skewed jet shear layer close to the jet nozzle were identified depending upon the velocity ratio between jet and crossflow, namely changing from an approximately axisymmetric mode to a helical one with the velocity ratios varying from 20 to 8. Moreover, the scarf vortex wrapped around the impinging jet in the near-wall zone showed distinct asymmetry with regard to its bilateral spiral legs within the near region. And the entrainment of the ambient crossflow fluids by the scarf vortex in the near-wall zone was appreciably influenced by its asymmetry and in a large part occurred on the surface of the spiral roller structures in the course of spreading downstream.展开更多
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b...This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.展开更多
The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and...The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and gross features between the numerical results and theexperimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) andconcentration distributions of the impinging jet in near field were obtained and analyzed. Theresults indicate that the flow and concentration fields of the impinging jet in the crossflowexhibit distinguished three-dimensionality in the near field. There exist upstream wail vortices anddownstream wall jet zones in the impinging region, and the TKE and concentration decays areasymmetrical in relation to the stagnation point. The lateral concentration distribution range inthe impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jetin the confined crossflow are mostly associated with the impinging action and lateral expansion inthe impinging region. The presence of the bottom wall restrains the formation of the span-wiserollers in the transverse jet region and vertical entrainment and mixing in the impinging region andthe transition re-gioa展开更多
Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomizati...Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns w展开更多
Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted...Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).展开更多
Shock waves can significantly affect the film cooling for supersonic flow and shock waves may have different influence when impinging in different regions.The present study numerically compared the results of shock wa...Shock waves can significantly affect the film cooling for supersonic flow and shock waves may have different influence when impinging in different regions.The present study numerically compared the results of shock wave impinging in three different regions and analyzed the effect of impinging region.The shock wave generators were located at x/s=5,25,45 with 4°,7°and 10°shock wave incidence.The mainstream Mach number was 3.2 and the coolant Mach number was 1.2 or 1.5.The numerical results illustrated that the shock wave impinged in the further upstream region led to a larger high-pressure region and a larger vortex in the boundary layer.Moreover,placing the shock wave generator upstream resulted in the lower mass fraction of coolant in the downstream region.The velocity in the upstream part of the cooling layer was lower than the midstream and downstream part,which resulted in the less ability to resist the shock wave impingement.Therefore,the upstream impingement deteriorated the cooling performance to a greater extent.The study also manifested that the stronger shock wave had a larger effect on supersonic film cooling.Increasing the coolant inlet Mach number can increase the blowing ratio and reduce the mixing,which was of benefit to improve cooling effect.展开更多
文摘The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.
基金Supported by the National Natural Science Foundation of China (No. 29276260, No. 20176043).
文摘Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.
基金Supported by the Key Technology R&D Program of Hubei Province, China (Grant No. 2006AA103A04)
文摘An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter optimization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2°C after 10 min operation, much lower than 112.2°C, which is measured without any active cooling techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, however, it will increase power consumption. Therefore, it should have a trade-off between the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and experiment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34°C, which is close to the value of 32.8°C obtained by surface experiment test. The simulation results also demonstrate that the micro jet device in the present cooling system needs parameter optimization.
基金the National Natural Science Foundation of China (No.29276260, No.20176043).ACKN0WLEDGEMENT The authors would like to thank Dr. Zhang Jian- wei who worked a lot in preparation of the apparatus for pressure fluctuation measurements.
文摘Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.
文摘Two independent versions of the RNG based k ε turbulence model in conjunction with the law of the wall have been applied to the numerical simulation of an axisymmetric turbulent impinging jet flow field. The two model predictions are compared with those of the standard k ε model and with the experimental data measured by LDV (Laser Doppler Velocimetry). It shows that the original version of the RNG k ε model with the choice of C ε1 =1.063 can not yield good results, among them the predicted turbulent kinetic energy profiles in the vicinity of the stagnation region are even worse than those predicted by the standard k ε model. However, the new version of RNG k ε model behaves well. This is mainly due to the corrections to the constants C ε1 and C ε2 along with a modification of the production term to account for non equilibrium strain rates in the flow.
基金Supported by the National Natural Science Foundation of China (Grant No. 50276028)
文摘To investigate the flow and heat transfer characteristics of a synthetic jet driven by piezoelectric actuator, experimental investigation utilizing particle image veloci- metry, hot-wire anemometer and infrared camera was carried out. The results show that: (1) At the jet orifice exit, pairs of vortexes are generated, broken down and merged together periodically, forming a steady jet within a several slot width from distance near the orifice exit. And during the development, the synthetic jet spreads rapidly along the minor axis direction of the orifice. While along the major axis direction, the synthetic jet contracts firstly and then spreads slowly. (2) Exci- tation frequency forced on the actuator has a great effect on the synthetic jet flow field. There are two resonance frequencies at which the mean velocity and vorticity of the synthetic jet are maximized, especially at the higher resonance frequency. The resonance frequency values obtained by the experiment are lower than the theoretical values. (3) Similarly to the common jet impingement, the convective heat transfer coefficients at the target surface impinged by the synthetic jet also take on up-down tendency varying with the jet-to-surface spacing increment. But the jet-to-surface spacing ratio for optimum cooling achievement is greater and the cooling action region is wider than the former, indicating that the synthetic jet in- troduces a stronger entrainment and more vigorous penetration in the surrounding fluid.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572084)Shanghai Leading Academic Discipline Project (Grant No. Y0103)
文摘The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear layer vortices close to the jet nozzle and the scarf vortex in the near-wall zone in good agreement with the experimental observations. Different vortical modes in the skewed jet shear layer close to the jet nozzle were identified depending upon the velocity ratio between jet and crossflow, namely changing from an approximately axisymmetric mode to a helical one with the velocity ratios varying from 20 to 8. Moreover, the scarf vortex wrapped around the impinging jet in the near-wall zone showed distinct asymmetry with regard to its bilateral spiral legs within the near region. And the entrainment of the ambient crossflow fluids by the scarf vortex in the near-wall zone was appreciably influenced by its asymmetry and in a large part occurred on the surface of the spiral roller structures in the course of spreading downstream.
基金supported by National Natural Science Foundation of China (Nos.5177622551876221)+1 种基金High-end Foreign Expert Introduction Project (G20190001270B18054)。
文摘This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.
文摘The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and gross features between the numerical results and theexperimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) andconcentration distributions of the impinging jet in near field were obtained and analyzed. Theresults indicate that the flow and concentration fields of the impinging jet in the crossflowexhibit distinguished three-dimensionality in the near field. There exist upstream wail vortices anddownstream wall jet zones in the impinging region, and the TKE and concentration decays areasymmetrical in relation to the stagnation point. The lateral concentration distribution range inthe impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jetin the confined crossflow are mostly associated with the impinging action and lateral expansion inthe impinging region. The presence of the bottom wall restrains the formation of the span-wiserollers in the transverse jet region and vertical entrainment and mixing in the impinging region andthe transition re-gioa
基金(Grants No. 00040486) was supported by Business for Cooperative R&D between Industry, AcademyResearch Institute funded Korea Small and Medium Business Administration in 2010
文摘Gel propulsion systems have many advantages with respect to high performance, the energy management of liquid propulsion systems, storability, high density impulse, and low leakage of liquid propellants. The atomization process provides sufficient contact surface area between the gelled fuel and oxidizer jets. It is important to study how injection characteristics of gelled propellants are related with break-up and spray distribution. The break-up and mixing processes are very important in achieving maximum efficiency and necessitate the careful study of combustion instability. Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the break-up process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. Especially, the break-up processes of the impinging jets at the initial conditions are studied. The break-up process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids which are mixed by ionized water 98.5 wt%, Carbopol 941 0.5wt% or 1.0wt%, and NaOH(concentration 10%) 1.0wt%. For the like-on-like doublet injector, the generation of a liquid sheet at the impinging point of two jets was observed. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Generally, the break-up length decreased due to the increasing Reynolds number. However, surface waves and atomized droplets increased. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. Also, the rim patterns of spray have no disturbances on the spray sheet. As the injection pressure increased, rimless patterns w
基金Project supported by the National Natural Science Foundation of China (50474022 and 50574069 )
文摘Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).
基金supported by the the National Science and Technology Major Project of China(No.2017-III-0003-0027)the Science Fund for Creative Research Groups of the NSFC(No.51621062)Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology。
文摘Shock waves can significantly affect the film cooling for supersonic flow and shock waves may have different influence when impinging in different regions.The present study numerically compared the results of shock wave impinging in three different regions and analyzed the effect of impinging region.The shock wave generators were located at x/s=5,25,45 with 4°,7°and 10°shock wave incidence.The mainstream Mach number was 3.2 and the coolant Mach number was 1.2 or 1.5.The numerical results illustrated that the shock wave impinged in the further upstream region led to a larger high-pressure region and a larger vortex in the boundary layer.Moreover,placing the shock wave generator upstream resulted in the lower mass fraction of coolant in the downstream region.The velocity in the upstream part of the cooling layer was lower than the midstream and downstream part,which resulted in the less ability to resist the shock wave impingement.Therefore,the upstream impingement deteriorated the cooling performance to a greater extent.The study also manifested that the stronger shock wave had a larger effect on supersonic film cooling.Increasing the coolant inlet Mach number can increase the blowing ratio and reduce the mixing,which was of benefit to improve cooling effect.