Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quanti...Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quantitative relationship with thermal environment are still poorly understood, resulting in ineffective application in urban ecological planning and management.Through the integration of "spatial structure theory" in urban geography and "surface energy balance" in urban climatology, we proposed a new concept of urban surface structure and thermal environment regulation to reveal the mechanism between urban spatial structure and surface thermal environment. We developed the EcoCity model for regulating urban land cover structure and thermal environment, and established the eco-regulation thresholds of urban surface thermal environments. Based on the comprehensive analysis of experimental observation, remotely sensed and meteorological data, we examined the spatial patterns of urban habitation, industrial, infrastructure service, and ecological spaces. We examined the impacts of internal land-cover components(e.g., urban impervious surfaces, greenness, and water) on surface radiation and heat flux. This research indicated that difference of thermal environments among urban functional areas is closely related to the proportions of the land-cover components.The highly dense impervious surface areas in commercial and residential zones significantly increased land surface temperature through increasing sensible heat flux, while greenness and water decrease land surface temperature through increasing latent heat flux. We also found that different functional zones due to various proportions of green spaces have various heat dissipation roles and ecological thresholds. Urban greening projects in highly dense impervious surfaces areas such as commercial, transportation, and residential zones are especially effective in promoting latent heat dissipation efficiency of vegetation, leading to strongly cooling effect of展开更多
The impervious surface area (ISA) at the regional scale is one of the important environmental factors for examining the interaction and mechanism of Land Use/Cover Change (LUCC)-ecosystem processes-climate change ...The impervious surface area (ISA) at the regional scale is one of the important environmental factors for examining the interaction and mechanism of Land Use/Cover Change (LUCC)-ecosystem processes-climate change under the interactions of urbanization and global environmental change. Timely and accurate extraction of ISA from remotely sensed data at the regional scale is challenging. This study explored the ISA extraction based on MODIS and DMSP-OLS data and the incorporation of China's land use/cover data. ISA datasets in Beijing-Tianjin-Tangshan Metropolitan Area (BTTMA) in 2000 and 2008 at a spatial resolution of 250 m were developed, their spatiotemporal changes were analyzed, and their impacts on water quality were then evaluated. The results indicated that ISA in BTTMA increased rapidly along urban fringe, transportation corridors and coastal belt both in intensity and extents from 2000 to 2008. Three cities (Tangshan, Langfang and Qinhuangdao) in Hebei Province had higher ISA growth rates than Beijing due to the pressure of population-resour- ces-environments in the city resulting in increasingly transferring industries to the nearby areas. The dense ISA distribution in BTTMA has serious impacts on water quality in the Haihe River watershed. Meanwhile, the proportion of ISA in sub-watersheds has significantly linear relationships with the densities of river COD and NH3-N.展开更多
The mapping of impervious surface area(ISA) and urban green space(UGS) is essential for improving the urban environmental quality toward ecological, livable, and sustainable goals. Currently, accurate ISA and UGS prod...The mapping of impervious surface area(ISA) and urban green space(UGS) is essential for improving the urban environmental quality toward ecological, livable, and sustainable goals. Currently, accurate ISA and UGS products are lacking in urban areas at the global scale. This study established regression models that estimated the fraction of ISA/UGS in global 30 cities for validation using MODIS NDVI and DMSP/OLS nighttime light imageries. A global dataset of ISA and UGS fraction with a spatial resolution of 250 m×250 m was developed using the regression model, with a mean relative error of 0.19 for its ISA. The results showed the global urban area of 76.29×10~4 km^2, which was primarily distributed in central Europe, eastern Asia,and central and eastern North America. The urban land area in North America, Europe, and Asia was 66.3×10~4 km^2, accounting for 86.91% of the world’s urban area;the urban land area of the top 50 countries accounted for 59.32% of the total urban land area in the world. The global ISA of 45.26×10~4 km^2 was mainly distributed in central and southern North America, eastern Asia, and Europe, as well as coastal regions around the world. The proportion of ISA situated in built-up areas on the continental scale followed the order of Africa(>70%)>South America>Oceania>Asia(>60%)>North America>Europe(>50%), and these areas were mostly in southeastern North America, southwestern Europe, and eastern and western Asia. North America, Europe, and Asia accounted for 89.44% of the world’s total UGS. The cities of developed countries in Europe and North America exposed a dramatic mosaic of ISA and UGS composites in urban construction. Therefore, the proportion of UGS is relatively high in those cities. However, in developing and underdeveloped countries, the proportion of UGS in built-up areas is relatively low, and urban environments need to be improved for livability.展开更多
Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecol...Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc(Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the500 m × 500 m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium(Cd) and Zn in soils. The population density,however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils.展开更多
Urban land cover has major impacts on a city's ecosystem services and the inherent quality of its urban residential environment. The spatio-temporal distribution of impervious surface area and green areas in Chinese ...Urban land cover has major impacts on a city's ecosystem services and the inherent quality of its urban residential environment. The spatio-temporal distribution of impervious surface area and green areas in Chinese cities has exhibited a significantly marked difference in comparison with USA cities. This study focused on monitoring and comparing the spatio-temporal dynamics, land cover patterns and characteristics of functional regions in six Chinese (n=3) and USA (n=3) cities. The study data were collated from Landsat TM/MSS imagery during the period 1978-2010. Results indicate that Chinese cities have developed compactly over the past three decades, while development has been notably dispersed among USA cities. Mean vegetation coverage in USA cities is approximately 2.2 times that found amongst Chinese urban agglomerations. Land use types within Chinese cities are significantly more complex, with a higher density of impervious surface area. Conversely, the central business district (CBD) and residential areas within USA cities were compdsed of a lower proportion of impervious surface area and a higher proportion of green land. Results may be used to contribute to future urban planning and administration efforts in both China and the USA.展开更多
Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at cont...Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries(Globe Land30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively展开更多
The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 20...The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 2000 s, urban expansion of Beijing has not been fully characterized through ISA. In this study, Landsat TM images of Beijing in 2001 and 2009 were obtained, and the eight-year urban expansion process in Beijing was analyzed using the ISA extracted by means of the vegetation-imperious surface-soil(V-I-S) model. From the spatial variation in ISA, the ring structure of urban expansion in Beijing was significant during the study period, with decreasing urban density from the city center to the periphery. In the ring road analysis, the most dramatic changes of ISA were found between the fifth ring and the sixth ring. This area has experienced the most new residential development, and is currently the main source of urban expansion. The typical profile lines revealed the directional characteristics of urban expansion. The east-west profile was the most urbanized axes in Beijing, while ISA change in the east-north profile was more significant than in the other five profiles. Moreover, the transition matrix of ISA levels revealed an increase in urban density in the low density built areas; the Moran′s I index showed a clear expansion of the central urban area, which spread contiguously; and the standard deviational ellipse indicated the northeast was the dominant direction of urban expansion. These findings can provide important spatial control guidelines in the next round of national economic and social development planning, overall urban and rural planning, and land use planning.展开更多
Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure t...Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and rnicroclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.展开更多
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val...The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) wa展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
Impervious surface area(ISA)is an important parameter for many environmental or socioeconomic relevant studies.The unique characteristics of remote sensing data made it the primary data source for ISA mapping at vario...Impervious surface area(ISA)is an important parameter for many environmental or socioeconomic relevant studies.The unique characteristics of remote sensing data made it the primary data source for ISA mapping at various scales.This paper summarizes general ISA mapping procedure and major techniques and discusses impacts of scale issues on selection of remote sensing data and corresponding algorithms.Previous studies have indicated that ISA mapping remains a challenge,especially in urban–rural frontiers and in covering a large area.Effectively employing rich spatial information in high spatial resolution imagery through texture and objectbased methods is valuable.Data fusion of multi-resolution images and spectral mixture analysis are common approaches to reduce the mixed pixel problem in medium spatial resolution images such as Landsat.Coarse spatial resolution images such as MODIS and DMSP-OLS are valuable for national and global ISA mapping but more research is needed to effectively integrate multisource/scale data for improving mapping performance.Development of an optimal procedure corresponding to specific study areas and purposes is required to generate accurate ISA mapping results.展开更多
Associated with the rapid economic development of China, the level of urbanization is becoming a serious concern. Harbin, the capital city of Heilongjiang Province, China and one of the political, economic, cultural, ...Associated with the rapid economic development of China, the level of urbanization is becoming a serious concern. Harbin, the capital city of Heilongjiang Province, China and one of the political, economic, cultural, and transportation centers of the northeastern region of China, has experienced rapid urbanization recently. To examine the spatial patterns of long-term urbanization and explore its driving forces, we employed the impervious surface fraction derived from remote sensing image as a primary indicator. Specifically, urban imper- vious surface information for the central city of Harbin in 1984, 1993, 2002, and 2010 was extracted from Landsat Thematic Mapper image using a Linear Spectral Mixture Analysis (LMSA). Then, the spatial and temporal variation characteristics and the driving factors of percent impervious surface area (ISA) changes were analyzed throughout this 26-year period (1984 to 2010). Analysis of results suggests that: (1) ISAs in the central city of Harbin con- stantly increased, particularly from 1993 to 2010, a rapid urbanization period; (2) the gravity center of impervious surface area in the central city was located in Nangang District in 1984, moving southeast from 1984 to 1993, northwest from 1993 to 2002, and continuing toward the southeast from 2002 to 2010; and (3) the urban growth of the central city can be character- ized as edge-type growth.展开更多
Rainwater and run-off from three kinds of impervious surface in the Shanghai urban area,China were sampled.Polycyclic aromatic hydrocarbons(PAHs) were measured in the samples,and their sources were assessed.The mean s...Rainwater and run-off from three kinds of impervious surface in the Shanghai urban area,China were sampled.Polycyclic aromatic hydrocarbons(PAHs) were measured in the samples,and their sources were assessed.The mean sum of the 16 PAH concentrations measured in rainwater and run-offs from ceramic tiles,asphalt roofs,and asphalt roads were 873,1404,1743,and 4023 ng/L,respectively.The PAH concentrations found in this study were moderate compared to PAH concentrations found in run-offs in other studies.The main PAH components in the rainwater,roof run-off,and asphalt road run-off samples were 3-ring PAHs,3–4-ring PAHs,and 4–6-ring PAHs,respectively.Source apportionment results indicated that combustion(47.4%–55.5%) and vehicular emissions(30.5%–33.0%) were the major contributors to PAHs in roof run-off.Vehicular emissions were the most significant contributors to asphalt road run-off(47.2%),followed by combustion(23.5%),and petroleum(16.3%).Vehicular emissions and coal and natural gas combustion are therefore the most significant sources of PAHs in run-off from impervious surfaces in the Shanghai urban area.展开更多
Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and...Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and the expansion of agricultural activities. The primary goal of the research was to use the HEC-HMS model to evaluate the impact of impervious soil layers and the increase in rainfall-runoff processes on hydrologic processes. For these purposes, the Watershed Modelling System (WMS) and Hydrologic Engineering Center’s-Hydrologic Modeling System (HEC-HMS) models were used in this study to simulate the rainfall-runoff process. To compute runoff rate, runoff volume, base flow, and flow routing methods SCS curve number, SCS unit hydrograph, recession, and loss routing methods were selected for the research, respectively. To reduce the processing time and computational complexity, a small section of the Pipestem Creek Watershed was selected to understand the methods and concepts associated with the hydrologic simulation model building. A DEM along with other required data such as land use land cover data, soil type data, and meteorological data was utilized to delineate the watershed in WMS. The output of WMS was utilized to run the HEC-HMS model for five different scenario analyses. All the relevant data were plugged in to the model to get the desired map. Subsequently, outlets at appropriate locations were selected for the sub-basin delineation for further analysis. Finally, the model was parametrized to get successful simulation results. Overall, peak discharges and runoff volumes were increased with increasing storm depths and impervious areas. Peak discharges were increased to 36% and 51% when rainfall depths were increased by 10% and 20% from the initial rainfall depth, respectively. Runoff volumes were also increased to 35% and 49% for the same scenarios, respectively. Peak discharges were increased to 12% and 78% with a 10% and 20%, respectively, increase in impervious areas. The runoff volumes we展开更多
Extraction of impervious surfaces is one of the necessary processes in urban change detection.This paper derived a unified conceptual model (UCM) from the vegetation-impervious surface-soil (VIS) model to make the ext...Extraction of impervious surfaces is one of the necessary processes in urban change detection.This paper derived a unified conceptual model (UCM) from the vegetation-impervious surface-soil (VIS) model to make the extraction more effective and accurate.UCM uses the decision tree algorithm with indices of spectrum and texture,etc.In this model,we found both dependent and independent indices for multi-source satellite imagery according to their similarity and dissimilarity.The purpose of the indices is to remove the other land-use and land-cover types (e.g.,vegetation and soil) from the imagery,and delineate the impervious surfaces as the result.UCM has the same steps conducted by decision tree algorithm.The Landsat-5 TM image (30 m) and the Satellite Probatoire d’Observation de la Terre (SPOT-4) image (20 m) from Chaoyang District (Beijing) in 2007 were used in this paper.The results show that the overall accuracy in Landsat-5 TM image is 88%,while 86.75% in SPOT-4 image.It is an appropriate method to meet the demand of urban change detection.展开更多
Development of Xiong'an New District(XND) is integral to the implementation of the Beijing-Tianjin-Hebei(BTH) Integration Initiative. It is intended to ease the non-capital functions of Beijing, optimize regional ...Development of Xiong'an New District(XND) is integral to the implementation of the Beijing-Tianjin-Hebei(BTH) Integration Initiative. It is intended to ease the non-capital functions of Beijing, optimize regional spatial patterns, and enhance ecosystem services and living environment in this urban agglomeration. Applying multi-stage remote sensing(RS) images, land use/cover change(LUCC) data, ecosystem services assessment data, and high-precision urban land-cover information, we reveal the regional land-cover characteristics of this new district as well as across the planned area of the entire BTH urban agglomeration. Corresponding ecological protection and management strategies are also proposed. Results indicated that built-up areas were rapidly expanding, leading to a continuous impervious surface at high density. Urban and impervious surface areas(ISAs) grew at rates 1.27 and 1.43 times higher than that in the 2000 s, respectively, seriously affecting about 15% area of the sub-basins. Construction of XND mainly encompasses Xiongxian, Rongcheng, and Anxin counties, areas which predominantly comprise farmland, townships and rural settlements, water, and wetland ecosystems. The development and construction of XND should ease the non-capital functions of Beijing, as well as moderately control population and industrial growth. Thus, this development should be included within the national ‘sponge city' construction pilot area in early planning stages, and reference should be made to international low-impact development modes in order to strengthen urban green infrastructural construction. Early stage planning based on the existing characteristics of the underlying surface should consider the construction of green ecological patches and ecological corridors between XND and the cities of Baoding, Beijing, and Tianjin. The proportion of impervious surfaces should not exceed 60%, while that of the core area should not exceed 70%. The development of XND needs to initiate the concept of ‘planning a city according to 展开更多
The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), ...The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), but few of them have considered the impact of the spatial configuration of ISA on UHI. Land surface temperature(LST) may be affected not only by urban land cover, but also by neighboring land cover. The aim of this research was to investigate the effects of the abundance and spatial association of ISAs on LST. Taking Harbin City, China as an example, the impact of ISA spatial association on LST measurements was examined. The abundance of ISAs and the LST measurements were derived from Landsat Thematic Mapper(TM) imagery of 2000 and 2010, and the spatial association patterns of ISAs were calculated using the local Moran’s I index. The impacts of ISA abundance and spatial association on LST were examined using correlation analysis. The results suggested that LST has significant positive associations with both ISA abundance and the Moran’s I index of ISAs, indicating that both the abundance and spatial clustering of ISAs contribute to elevated values of LST. It was also found that LST is positively associated with clustering of high-ISA-percentage areas(i.e.,>50%) and negatively associated with clustering of low-ISA-percentage areas(i.e.,<25%). The results suggest that, in addition to the abundance of ISAs,their spatial association has a significant effect on UHIs.展开更多
基金financially supported by the Major Projects of the National Natural Science Foundation of China (Grant No. 41590842)General Program of the National Natural Science Foundation of China (Grant No. 41371408)
文摘Urban land-use/cover changes and their effects on the eco-environment have long been an active research topic in the urbanization field. However, the characteristics of urban inner spatial heterogeneity and its quantitative relationship with thermal environment are still poorly understood, resulting in ineffective application in urban ecological planning and management.Through the integration of "spatial structure theory" in urban geography and "surface energy balance" in urban climatology, we proposed a new concept of urban surface structure and thermal environment regulation to reveal the mechanism between urban spatial structure and surface thermal environment. We developed the EcoCity model for regulating urban land cover structure and thermal environment, and established the eco-regulation thresholds of urban surface thermal environments. Based on the comprehensive analysis of experimental observation, remotely sensed and meteorological data, we examined the spatial patterns of urban habitation, industrial, infrastructure service, and ecological spaces. We examined the impacts of internal land-cover components(e.g., urban impervious surfaces, greenness, and water) on surface radiation and heat flux. This research indicated that difference of thermal environments among urban functional areas is closely related to the proportions of the land-cover components.The highly dense impervious surface areas in commercial and residential zones significantly increased land surface temperature through increasing sensible heat flux, while greenness and water decrease land surface temperature through increasing latent heat flux. We also found that different functional zones due to various proportions of green spaces have various heat dissipation roles and ecological thresholds. Urban greening projects in highly dense impervious surfaces areas such as commercial, transportation, and residential zones are especially effective in promoting latent heat dissipation efficiency of vegetation, leading to strongly cooling effect of
基金The Young Scientist Fund of National Natural Science Foundation of China, No.40901224 National Basic Research Program of China, No.2010CB950900+1 种基金 Open Fund of State Key Laboratory of Remote Sensing Science, No.2009KFJJ005 Open Fund of State Key Lab of Resources and Environmental Information System, No.A0725
文摘The impervious surface area (ISA) at the regional scale is one of the important environmental factors for examining the interaction and mechanism of Land Use/Cover Change (LUCC)-ecosystem processes-climate change under the interactions of urbanization and global environmental change. Timely and accurate extraction of ISA from remotely sensed data at the regional scale is challenging. This study explored the ISA extraction based on MODIS and DMSP-OLS data and the incorporation of China's land use/cover data. ISA datasets in Beijing-Tianjin-Tangshan Metropolitan Area (BTTMA) in 2000 and 2008 at a spatial resolution of 250 m were developed, their spatiotemporal changes were analyzed, and their impacts on water quality were then evaluated. The results indicated that ISA in BTTMA increased rapidly along urban fringe, transportation corridors and coastal belt both in intensity and extents from 2000 to 2008. Three cities (Tangshan, Langfang and Qinhuangdao) in Hebei Province had higher ISA growth rates than Beijing due to the pressure of population-resour- ces-environments in the city resulting in increasingly transferring industries to the nearby areas. The dense ISA distribution in BTTMA has serious impacts on water quality in the Haihe River watershed. Meanwhile, the proportion of ISA in sub-watersheds has significantly linear relationships with the densities of river COD and NH3-N.
基金supported by the Major Projects of the National Natural Science Foundation of China(Grant No.41590842)the Strategic Priority Research Program of the Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(Grant No.XDA20040400)the National High Technology Research and Development Program of China(Grant No.2013AA122802)
文摘The mapping of impervious surface area(ISA) and urban green space(UGS) is essential for improving the urban environmental quality toward ecological, livable, and sustainable goals. Currently, accurate ISA and UGS products are lacking in urban areas at the global scale. This study established regression models that estimated the fraction of ISA/UGS in global 30 cities for validation using MODIS NDVI and DMSP/OLS nighttime light imageries. A global dataset of ISA and UGS fraction with a spatial resolution of 250 m×250 m was developed using the regression model, with a mean relative error of 0.19 for its ISA. The results showed the global urban area of 76.29×10~4 km^2, which was primarily distributed in central Europe, eastern Asia,and central and eastern North America. The urban land area in North America, Europe, and Asia was 66.3×10~4 km^2, accounting for 86.91% of the world’s urban area;the urban land area of the top 50 countries accounted for 59.32% of the total urban land area in the world. The global ISA of 45.26×10~4 km^2 was mainly distributed in central and southern North America, eastern Asia, and Europe, as well as coastal regions around the world. The proportion of ISA situated in built-up areas on the continental scale followed the order of Africa(>70%)>South America>Oceania>Asia(>60%)>North America>Europe(>50%), and these areas were mostly in southeastern North America, southwestern Europe, and eastern and western Asia. North America, Europe, and Asia accounted for 89.44% of the world’s total UGS. The cities of developed countries in Europe and North America exposed a dramatic mosaic of ISA and UGS composites in urban construction. Therefore, the proportion of UGS is relatively high in those cities. However, in developing and underdeveloped countries, the proportion of UGS in built-up areas is relatively low, and urban environments need to be improved for livability.
基金the financial support provided by the National Natural Science Foundation of China(No.41271503)the Special Foundation of State Key Lab of Urban and Regional Ecology(No.SKLURE2013-1-4)
文摘Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc(Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the500 m × 500 m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium(Cd) and Zn in soils. The population density,however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils.
基金National Natural Science Foundation of China, No.41371408 National High-Tech R&D Program of China, No.2013AA122802+2 种基金 National Basic Research Program of China, No.2010CB950900 No.2014CB954302 National Key Technology R&D Program, No.2012BAJ15B02
文摘Urban land cover has major impacts on a city's ecosystem services and the inherent quality of its urban residential environment. The spatio-temporal distribution of impervious surface area and green areas in Chinese cities has exhibited a significantly marked difference in comparison with USA cities. This study focused on monitoring and comparing the spatio-temporal dynamics, land cover patterns and characteristics of functional regions in six Chinese (n=3) and USA (n=3) cities. The study data were collated from Landsat TM/MSS imagery during the period 1978-2010. Results indicate that Chinese cities have developed compactly over the past three decades, while development has been notably dispersed among USA cities. Mean vegetation coverage in USA cities is approximately 2.2 times that found amongst Chinese urban agglomerations. Land use types within Chinese cities are significantly more complex, with a higher density of impervious surface area. Conversely, the central business district (CBD) and residential areas within USA cities were compdsed of a lower proportion of impervious surface area and a higher proportion of green land. Results may be used to contribute to future urban planning and administration efforts in both China and the USA.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41371408 & 41371409)the National High Technology Research and Development Program of China (Grant No. 2013AA122802)the State Key Development Program for Basic Research of China (Grant No. 413714082014CB954302)
文摘Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries(Globe Land30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×104 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×104 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate environment. Built-up areas in developed countries had relatively
基金Under the auspices of Key Project of National Natural Science Foundation of China(No.41130534)
文摘The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 2000 s, urban expansion of Beijing has not been fully characterized through ISA. In this study, Landsat TM images of Beijing in 2001 and 2009 were obtained, and the eight-year urban expansion process in Beijing was analyzed using the ISA extracted by means of the vegetation-imperious surface-soil(V-I-S) model. From the spatial variation in ISA, the ring structure of urban expansion in Beijing was significant during the study period, with decreasing urban density from the city center to the periphery. In the ring road analysis, the most dramatic changes of ISA were found between the fifth ring and the sixth ring. This area has experienced the most new residential development, and is currently the main source of urban expansion. The typical profile lines revealed the directional characteristics of urban expansion. The east-west profile was the most urbanized axes in Beijing, while ISA change in the east-north profile was more significant than in the other five profiles. Moreover, the transition matrix of ISA levels revealed an increase in urban density in the low density built areas; the Moran′s I index showed a clear expansion of the central urban area, which spread contiguously; and the standard deviational ellipse indicated the northeast was the dominant direction of urban expansion. These findings can provide important spatial control guidelines in the next round of national economic and social development planning, overall urban and rural planning, and land use planning.
基金supported by the National Basic Research Program (973) of China (No. 2008CB418104)the Major Programs of the Chinese Academy of Sciences (No. KZCX1-YW-14-4-1)the National Natural Science Foundation of China (No. 40901265)
文摘Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and rnicroclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.
基金Under the auspices of National Natural Science Foundation of China(No.41671339)
文摘The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) wa
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
基金The authors acknowledge supports from the Zhejiang A&F University’s Research and Development Fund-talent startup project(2013FR052)Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration,School of Environmental and Resource Sciences,Zhejiang A&F University and Center for Global Change and Earth Observations,Michigan State University.
文摘Impervious surface area(ISA)is an important parameter for many environmental or socioeconomic relevant studies.The unique characteristics of remote sensing data made it the primary data source for ISA mapping at various scales.This paper summarizes general ISA mapping procedure and major techniques and discusses impacts of scale issues on selection of remote sensing data and corresponding algorithms.Previous studies have indicated that ISA mapping remains a challenge,especially in urban–rural frontiers and in covering a large area.Effectively employing rich spatial information in high spatial resolution imagery through texture and objectbased methods is valuable.Data fusion of multi-resolution images and spectral mixture analysis are common approaches to reduce the mixed pixel problem in medium spatial resolution images such as Landsat.Coarse spatial resolution images such as MODIS and DMSP-OLS are valuable for national and global ISA mapping but more research is needed to effectively integrate multisource/scale data for improving mapping performance.Development of an optimal procedure corresponding to specific study areas and purposes is required to generate accurate ISA mapping results.
基金Natural Science Foundation of Heilongjiang Province,No.QC2016050National Natural Science Foundation of China,No.41571199,No.41601382,No.41771195
文摘Associated with the rapid economic development of China, the level of urbanization is becoming a serious concern. Harbin, the capital city of Heilongjiang Province, China and one of the political, economic, cultural, and transportation centers of the northeastern region of China, has experienced rapid urbanization recently. To examine the spatial patterns of long-term urbanization and explore its driving forces, we employed the impervious surface fraction derived from remote sensing image as a primary indicator. Specifically, urban imper- vious surface information for the central city of Harbin in 1984, 1993, 2002, and 2010 was extracted from Landsat Thematic Mapper image using a Linear Spectral Mixture Analysis (LMSA). Then, the spatial and temporal variation characteristics and the driving factors of percent impervious surface area (ISA) changes were analyzed throughout this 26-year period (1984 to 2010). Analysis of results suggests that: (1) ISAs in the central city of Harbin con- stantly increased, particularly from 1993 to 2010, a rapid urbanization period; (2) the gravity center of impervious surface area in the central city was located in Nangang District in 1984, moving southeast from 1984 to 1993, northwest from 1993 to 2002, and continuing toward the southeast from 2002 to 2010; and (3) the urban growth of the central city can be character- ized as edge-type growth.
基金supported by the National Key Technology R&D Program of China(No.2010BAK69B16-1)the Shanghai Commission of Science and Technology(No.10dz1200402),China
文摘Rainwater and run-off from three kinds of impervious surface in the Shanghai urban area,China were sampled.Polycyclic aromatic hydrocarbons(PAHs) were measured in the samples,and their sources were assessed.The mean sum of the 16 PAH concentrations measured in rainwater and run-offs from ceramic tiles,asphalt roofs,and asphalt roads were 873,1404,1743,and 4023 ng/L,respectively.The PAH concentrations found in this study were moderate compared to PAH concentrations found in run-offs in other studies.The main PAH components in the rainwater,roof run-off,and asphalt road run-off samples were 3-ring PAHs,3–4-ring PAHs,and 4–6-ring PAHs,respectively.Source apportionment results indicated that combustion(47.4%–55.5%) and vehicular emissions(30.5%–33.0%) were the major contributors to PAHs in roof run-off.Vehicular emissions were the most significant contributors to asphalt road run-off(47.2%),followed by combustion(23.5%),and petroleum(16.3%).Vehicular emissions and coal and natural gas combustion are therefore the most significant sources of PAHs in run-off from impervious surfaces in the Shanghai urban area.
文摘Hydrologic modeling is a popular tool for estimating the hydrological response of a watershed. However, modeling processes are becoming more complex due to land-use changes such as urbanization, industrialization, and the expansion of agricultural activities. The primary goal of the research was to use the HEC-HMS model to evaluate the impact of impervious soil layers and the increase in rainfall-runoff processes on hydrologic processes. For these purposes, the Watershed Modelling System (WMS) and Hydrologic Engineering Center’s-Hydrologic Modeling System (HEC-HMS) models were used in this study to simulate the rainfall-runoff process. To compute runoff rate, runoff volume, base flow, and flow routing methods SCS curve number, SCS unit hydrograph, recession, and loss routing methods were selected for the research, respectively. To reduce the processing time and computational complexity, a small section of the Pipestem Creek Watershed was selected to understand the methods and concepts associated with the hydrologic simulation model building. A DEM along with other required data such as land use land cover data, soil type data, and meteorological data was utilized to delineate the watershed in WMS. The output of WMS was utilized to run the HEC-HMS model for five different scenario analyses. All the relevant data were plugged in to the model to get the desired map. Subsequently, outlets at appropriate locations were selected for the sub-basin delineation for further analysis. Finally, the model was parametrized to get successful simulation results. Overall, peak discharges and runoff volumes were increased with increasing storm depths and impervious areas. Peak discharges were increased to 36% and 51% when rainfall depths were increased by 10% and 20% from the initial rainfall depth, respectively. Runoff volumes were also increased to 35% and 49% for the same scenarios, respectively. Peak discharges were increased to 12% and 78% with a 10% and 20%, respectively, increase in impervious areas. The runoff volumes we
基金supported by the National Natural Science Foundation of China (Grant No.40671127)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant Nos.2006AA120101,2006AA120102)+1 种基金the National Key Technology Research and Development Program (Grant No.2008BAK49B04)the National China Next General Internet Program (Grant No.CNGI–09–01–07)
文摘Extraction of impervious surfaces is one of the necessary processes in urban change detection.This paper derived a unified conceptual model (UCM) from the vegetation-impervious surface-soil (VIS) model to make the extraction more effective and accurate.UCM uses the decision tree algorithm with indices of spectrum and texture,etc.In this model,we found both dependent and independent indices for multi-source satellite imagery according to their similarity and dissimilarity.The purpose of the indices is to remove the other land-use and land-cover types (e.g.,vegetation and soil) from the imagery,and delineate the impervious surfaces as the result.UCM has the same steps conducted by decision tree algorithm.The Landsat-5 TM image (30 m) and the Satellite Probatoire d’Observation de la Terre (SPOT-4) image (20 m) from Chaoyang District (Beijing) in 2007 were used in this paper.The results show that the overall accuracy in Landsat-5 TM image is 88%,while 86.75% in SPOT-4 image.It is an appropriate method to meet the demand of urban change detection.
基金Key Project of Beijing Natural Science Foundation,No.8171004
文摘Development of Xiong'an New District(XND) is integral to the implementation of the Beijing-Tianjin-Hebei(BTH) Integration Initiative. It is intended to ease the non-capital functions of Beijing, optimize regional spatial patterns, and enhance ecosystem services and living environment in this urban agglomeration. Applying multi-stage remote sensing(RS) images, land use/cover change(LUCC) data, ecosystem services assessment data, and high-precision urban land-cover information, we reveal the regional land-cover characteristics of this new district as well as across the planned area of the entire BTH urban agglomeration. Corresponding ecological protection and management strategies are also proposed. Results indicated that built-up areas were rapidly expanding, leading to a continuous impervious surface at high density. Urban and impervious surface areas(ISAs) grew at rates 1.27 and 1.43 times higher than that in the 2000 s, respectively, seriously affecting about 15% area of the sub-basins. Construction of XND mainly encompasses Xiongxian, Rongcheng, and Anxin counties, areas which predominantly comprise farmland, townships and rural settlements, water, and wetland ecosystems. The development and construction of XND should ease the non-capital functions of Beijing, as well as moderately control population and industrial growth. Thus, this development should be included within the national ‘sponge city' construction pilot area in early planning stages, and reference should be made to international low-impact development modes in order to strengthen urban green infrastructural construction. Early stage planning based on the existing characteristics of the underlying surface should consider the construction of green ecological patches and ecological corridors between XND and the cities of Baoding, Beijing, and Tianjin. The proportion of impervious surfaces should not exceed 60%, while that of the core area should not exceed 70%. The development of XND needs to initiate the concept of ‘planning a city according to
基金Under the auspices of the National Social Science Foundation of China(No.16BJY039)
文摘The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), but few of them have considered the impact of the spatial configuration of ISA on UHI. Land surface temperature(LST) may be affected not only by urban land cover, but also by neighboring land cover. The aim of this research was to investigate the effects of the abundance and spatial association of ISAs on LST. Taking Harbin City, China as an example, the impact of ISA spatial association on LST measurements was examined. The abundance of ISAs and the LST measurements were derived from Landsat Thematic Mapper(TM) imagery of 2000 and 2010, and the spatial association patterns of ISAs were calculated using the local Moran’s I index. The impacts of ISA abundance and spatial association on LST were examined using correlation analysis. The results suggested that LST has significant positive associations with both ISA abundance and the Moran’s I index of ISAs, indicating that both the abundance and spatial clustering of ISAs contribute to elevated values of LST. It was also found that LST is positively associated with clustering of high-ISA-percentage areas(i.e.,>50%) and negatively associated with clustering of low-ISA-percentage areas(i.e.,<25%). The results suggest that, in addition to the abundance of ISAs,their spatial association has a significant effect on UHIs.