Porous silicon (PS) suitable for optical detection of immunoreaction is fabricated. The structure of immunosensor is prepared by the following steps: oxidization, silanization, glutaraldehyde cross-linker, and cova...Porous silicon (PS) suitable for optical detection of immunoreaction is fabricated. The structure of immunosensor is prepared by the following steps: oxidization, silanization, glutaraldehyde cross-linker, and covalent binding of antibody. When antigen is added into the immunosensor, the Raman intensity is estimated to be linearly reduced according to the concentration of the surface protective antigen protein A (spaA) of below 4.0 μg ml-1. The ultimate detection limit is 1.412 × 102 pg ml-1. Controlled experiments are also presented with non-immune antigen of the spaA, and results show that the immunosensor has high specificity. Compared with the conventional enzyme-linked immuno sorbent assay (ELISA), this method is quick, inexpensive, and label-free.展开更多
Advances in sensor technology have allowed the significant progress in the monitoring of noxious compounds in the sea, providing real-time detection so as to prevent risks associated with the diffusion and dispersion ...Advances in sensor technology have allowed the significant progress in the monitoring of noxious compounds in the sea, providing real-time detection so as to prevent risks associated with the diffusion and dispersion of toxic substances in the environment. An important element in the overall picture is the harmful algal blooms which pose serious threats to marine ecosystems through the production of toxins that accumulate in filter-feeders and ultimately impact both human health and fisheries. Domoic acid is a neurotoxic amino acid produced by marine planktonic diatoms of the genus Pseudo-nitzschia. Here we monitored domoic acid production by natural Pseudo-nitzschia populations in phytoplankton samples collected along the Middle Tyrrhenian coast, over the course of one year, using selective immunosensors based on screenprinted electrodes, using differential pulse voltammetry as the electrochemical technique, to yield quantitative outputs. In this work, disposable devices have been applied for monitoring the production of domoic acid on algal extracts and the results have been validated by conventional high pressure liquid chromatography-ultraviolet detection methods. The data obtained revealed the presence of domoic acid in Italian phytoplankton, especially in coastal impacted areas, highlighting the potential risk of toxin entering into marine food webs and the environment. Immunosensors based on screen-printed electrodes prove to be effective tools for annual monitoring of domoic acid in seawater samples, thus providing a reliable early warning system relative to health and economic impact of algal toxins.展开更多
Celiac disease is a permanent intolerance to gluten proteins of wheat, rye, barley, and oats in genetically susceptible individuals. The clinical picture is characterized by inflammation and damage of the small intest...Celiac disease is a permanent intolerance to gluten proteins of wheat, rye, barley, and oats in genetically susceptible individuals. The clinical picture is characterized by inflammation and damage of the small intestinal mucosa and malabsorption of essential nutrients. Therapeutically, a lifelong strict gluten-free diet is necessary. The diagnosis of celiac disease is complex and includes symptomatology, serology, small intestinal histology, and genetic status. Serological testing plays a central role within the diagnostic procedure and is based on the measurement of disease-specific antibodies against gluten proteins (antigen) and tissue transglutaminase (autoantigen). Immunofluorescence detection and enzyme-linked immunosorbent assays are currently most often applied for antibody testing. However, these tests are expensive and time-consuming. Therefore, simple and rapid alternative methods have been developed during the last years, and electro-chemical immunosensors seem to be the most promising analytical tools. The architecture of these sensors may comprise the following elements: working and reference electrodes, covalent or noncovalent binding of the antigen to the surface of the working electrode by means of a functional monolayer, and blocking of unreacted binding sites. The analytical procedure is initiated by adding the analyte (serum antibodies) and an analyte-specific second antibody, which is usually labeled with an enzyme. The special reaction of the enzyme with an appropriate substrate results in a product that initiates a current that can be measured by different electrical methods. A number of different electrochemical immunosensors variable in different electrodes, binding systems, secondary antibodies, and current measurements have been developed. Most of them have been tested with real human serum samples of celiac patients and healthy individuals, and some of them reached disease sensitivity and specificity comparable with traditional analytical systems. Thus, electrochemical immunosensors c展开更多
Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). H...Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus(HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensortechnologies employed in HCV detection.There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV.Due to their simplicity,specificity,and reliability,electrochemical biosensor devices have potential clinical applications in several viral infections.展开更多
基金supported by the National Natural Science Foundation of China (No. 60968002)the Program for New Century Excellent Talents in University of China (NCET-05-0897)
文摘Porous silicon (PS) suitable for optical detection of immunoreaction is fabricated. The structure of immunosensor is prepared by the following steps: oxidization, silanization, glutaraldehyde cross-linker, and covalent binding of antibody. When antigen is added into the immunosensor, the Raman intensity is estimated to be linearly reduced according to the concentration of the surface protective antigen protein A (spaA) of below 4.0 μg ml-1. The ultimate detection limit is 1.412 × 102 pg ml-1. Controlled experiments are also presented with non-immune antigen of the spaA, and results show that the immunosensor has high specificity. Compared with the conventional enzyme-linked immuno sorbent assay (ELISA), this method is quick, inexpensive, and label-free.
文摘Advances in sensor technology have allowed the significant progress in the monitoring of noxious compounds in the sea, providing real-time detection so as to prevent risks associated with the diffusion and dispersion of toxic substances in the environment. An important element in the overall picture is the harmful algal blooms which pose serious threats to marine ecosystems through the production of toxins that accumulate in filter-feeders and ultimately impact both human health and fisheries. Domoic acid is a neurotoxic amino acid produced by marine planktonic diatoms of the genus Pseudo-nitzschia. Here we monitored domoic acid production by natural Pseudo-nitzschia populations in phytoplankton samples collected along the Middle Tyrrhenian coast, over the course of one year, using selective immunosensors based on screenprinted electrodes, using differential pulse voltammetry as the electrochemical technique, to yield quantitative outputs. In this work, disposable devices have been applied for monitoring the production of domoic acid on algal extracts and the results have been validated by conventional high pressure liquid chromatography-ultraviolet detection methods. The data obtained revealed the presence of domoic acid in Italian phytoplankton, especially in coastal impacted areas, highlighting the potential risk of toxin entering into marine food webs and the environment. Immunosensors based on screen-printed electrodes prove to be effective tools for annual monitoring of domoic acid in seawater samples, thus providing a reliable early warning system relative to health and economic impact of algal toxins.
文摘Celiac disease is a permanent intolerance to gluten proteins of wheat, rye, barley, and oats in genetically susceptible individuals. The clinical picture is characterized by inflammation and damage of the small intestinal mucosa and malabsorption of essential nutrients. Therapeutically, a lifelong strict gluten-free diet is necessary. The diagnosis of celiac disease is complex and includes symptomatology, serology, small intestinal histology, and genetic status. Serological testing plays a central role within the diagnostic procedure and is based on the measurement of disease-specific antibodies against gluten proteins (antigen) and tissue transglutaminase (autoantigen). Immunofluorescence detection and enzyme-linked immunosorbent assays are currently most often applied for antibody testing. However, these tests are expensive and time-consuming. Therefore, simple and rapid alternative methods have been developed during the last years, and electro-chemical immunosensors seem to be the most promising analytical tools. The architecture of these sensors may comprise the following elements: working and reference electrodes, covalent or noncovalent binding of the antigen to the surface of the working electrode by means of a functional monolayer, and blocking of unreacted binding sites. The analytical procedure is initiated by adding the analyte (serum antibodies) and an analyte-specific second antibody, which is usually labeled with an enzyme. The special reaction of the enzyme with an appropriate substrate results in a product that initiates a current that can be measured by different electrical methods. A number of different electrochemical immunosensors variable in different electrodes, binding systems, secondary antibodies, and current measurements have been developed. Most of them have been tested with real human serum samples of celiac patients and healthy individuals, and some of them reached disease sensitivity and specificity comparable with traditional analytical systems. Thus, electrochemical immunosensors c
基金Supported by Brazilian funding agencies(Sao Paulo Research Foundation-FAPESP and National Council for Scientific and Technological Development-CNPq)
文摘Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus(HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus(HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensortechnologies employed in HCV detection.There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV.Due to their simplicity,specificity,and reliability,electrochemical biosensor devices have potential clinical applications in several viral infections.