期刊文献+
共找到5,391篇文章
< 1 2 250 >
每页显示 20 50 100
深度学习的昨天、今天和明天 被引量:614
1
作者 余凯 贾磊 +1 位作者 陈雨强 徐伟 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1799-1804,共6页
机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来,机器学习在算法、理论和应用等方面都获得巨大成功.2006年以来,机器学习领域中一个叫"深度学习"的课题开始受到学术界广泛关注,到今天已经成为互联网大数据和人... 机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来,机器学习在算法、理论和应用等方面都获得巨大成功.2006年以来,机器学习领域中一个叫"深度学习"的课题开始受到学术界广泛关注,到今天已经成为互联网大数据和人工智能的一个热潮.深度学习通过建立类似于人脑的分层模型结构,对输入数据逐级提取从底层到高层的特征,从而能很好地建立从底层信号到高层语义的映射关系.近年来,谷歌、微软、IBM、百度等拥有大数据的高科技公司相继投入大量资源进行深度学习技术研发,在语音、图像、自然语言、在线广告等领域取得显著进展.从对实际应用的贡献来说,深度学习可能是机器学习领域最近这十年来最成功的研究方向.将对深度学习发展的过去和现在做一个全景式的介绍,并讨论深度学习所面临的挑战,以及将来的可能方向. 展开更多
关键词 机器学习 深度学习 语音识别 图像识别 自然语言处理 在线广告
下载PDF
深度卷积神经网络在计算机视觉中的应用研究综述 被引量:564
2
作者 卢宏涛 张秦川 《数据采集与处理》 CSCD 北大核心 2016年第1期1-17,共17页
随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks,CNNs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。使用深度学习算法训练的卷积神经网络模型自提出以来在... 随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks,CNNs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。使用深度学习算法训练的卷积神经网络模型自提出以来在计算机视觉领域的多个大规模识别任务上取得了令人瞩目的成绩。本文首先简要介绍深度学习和卷积神经网络的兴起与发展,概述卷积神经网络的基本模型结构、卷积特征提取和池化操作。然后综述了基于深度学习的卷积神经网络模型在图像分类、物体检测、姿态估计、图像分割和人脸识别等多个计算机视觉应用领域中的研究现状和发展趋势,主要从典型的网络结构的构建、训练方法和性能表现3个方面进行介绍。最后对目前研究中存在的一些问题进行简要的总结和讨论,并展望未来发展的新方向。 展开更多
关键词 深度学习 卷积神经网络 图像识别 目标检测 计算机视觉
下载PDF
深度学习在图像识别中的应用研究综述 被引量:400
3
作者 郑远攀 李广阳 李晔 《计算机工程与应用》 CSCD 北大核心 2019年第12期20-36,共17页
深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度... 深度学习作为图像识别领域重要的技术手段,有着广阔的应用前景,开展图像识别技术研究对推动计算机视觉及人工智能的发展具有重要的理论价值和现实意义,文中对深度学习在图像识别中的应用给予综述。介绍了深度学习的由来,具体分析了深度信念网络、卷积神经网络、循环神经网络、生成式对抗网络以及胶囊网络等深度学习模型,对各个深度学习模型的改进型模型逐一对比分析。总结近年来深度学习在人脸识别、医学图像识别、遥感图像分类等图像识别应用领域取得的研究成果并探讨了已有研究值得商榷之处,对深度学习在图像识别领域中的发展趋势进行探讨,指出有效使用迁移学习技术识别小样本数据,使用非监督与半监督学习对图像进行识别,如何对视频图像进行有效识别以及强化模型的理论性等是该领域研究的进一步方向。 展开更多
关键词 深度学习 图像识别 卷积神经网络 胶囊网络 迁移学习 非监督学习
下载PDF
基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位 被引量:176
4
作者 赵德安 吴任迪 +1 位作者 刘晓洋 赵宇艳 《农业工程学报》 EI CAS CSCD 北大核心 2019年第3期164-173,共10页
为提高苹果采摘机器人的工作效率和环境适应性,使其能全天候的在不同光线环境下对遮挡、粘连和套袋等多种情况下的果实进行识别定位,该文提出了基于YOLOv3(you only look once)深度卷积神经网络的苹果定位方法。该方法通过单个卷积神经... 为提高苹果采摘机器人的工作效率和环境适应性,使其能全天候的在不同光线环境下对遮挡、粘连和套袋等多种情况下的果实进行识别定位,该文提出了基于YOLOv3(you only look once)深度卷积神经网络的苹果定位方法。该方法通过单个卷积神经网络(one-stage)遍历整个图像,回归目标的类别和位置,实现了直接端到端的目标检测,在保证效率与准确率兼顾的情况下实现了复杂环境下苹果的检测。经过训练的模型在验证集下的m AP(meanaverageprecision)为87.71%,准确率为97%,召回率为90%,IOU(intersection over union)为83.61%。通过比较YOLOv3与Faster RCNN算法在不同数目、不同拍摄时间、不同生长阶段、不同光线下对苹果的实际检测效果,并以F1为评估值对比分析了4种算法的差异,试验结果表明YOLOv3在密集苹果的F1高于YOLOv2算法4.45个百分点,在其他环境下高于Faster RCNN将近5个百分点,高于HOG+SVM(histogram of oriented gradient+support vector machine)将近10个百分点。并且在不同硬件环境验证了该算法的可行性,一幅图像在GPU下的检测时间为16.69 ms,在CPU下的检测时间为105.21 ms,实际检测视频的帧率达到了60帧/s和15帧/s。该研究可为机器人快速长时间高效率在复杂环境下识别苹果提供理论基础。 展开更多
关键词 收获机 机器视觉 图像识别 深度学习 采摘机器人 苹果识别 YOLO
下载PDF
人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述 被引量:174
5
作者 刘云鹏 许自强 +2 位作者 李刚 夏彦卫 高树国 《高电压技术》 EI CAS CSCD 北大核心 2019年第2期337-348,共12页
状态检修为电力变压器的稳定运行与优质电力的正常供应提供了重要保障。随着智能电网建设的不断推进,包括状态监测、生产管理、运行调度、气象环境等在内的电力变压器运行状态相关信息已逐步呈现出体量大、种类多、增长快的典型大数据... 状态检修为电力变压器的稳定运行与优质电力的正常供应提供了重要保障。随着智能电网建设的不断推进,包括状态监测、生产管理、运行调度、气象环境等在内的电力变压器运行状态相关信息已逐步呈现出体量大、种类多、增长快的典型大数据特征。因此,在电力大数据的时代背景下,开展结合人工智能技术的电力变压器状态数据综合挖掘与分析研究,对于进一步提升设备状态检修的全面性、高效性与准确性具有十分重要的意义。鉴于此,首先概述了面向数据分析的人工智能技术,涵盖专家系统、不确定性推理、机器学习及智能优化计算等研究内容;然后,结合电力变压器状态检修各阶段任务的智能化需求,论述了人工智能驱动的数据分析技术在数据清洗、文本挖掘、图像识别、状态评估、故障诊断、状态预测及检修决策优化等典型场景中的应用研究现状;最后,探讨了现阶段影响基于人工智能的数据分析技术在状态检修领域应用效果的关键问题,并对未来的主要研究方向进行了展望。 展开更多
关键词 人工智能 数据分析 电力变压器 状态检修 图像识别 专家系统
下载PDF
数据驱动的人工智能技术在电力设备状态分析中的研究与应用 被引量:147
6
作者 唐文虎 牛哲文 +3 位作者 赵柏宁 季天瑶 李梦诗 吴青华 《高电压技术》 EI CAS CSCD 北大核心 2020年第9期2985-2999,共15页
电力设备作为电力系统的基本要素,其运行状态对电网的安全经济运行有直接影响。随着电力物联网的建设和智能传感器技术的不断发展,电力设备运行状态的相关信息呈现出多源、异构的数据特征。研究以海量多源异构数据为驱动的基于人工智能... 电力设备作为电力系统的基本要素,其运行状态对电网的安全经济运行有直接影响。随着电力物联网的建设和智能传感器技术的不断发展,电力设备运行状态的相关信息呈现出多源、异构的数据特征。研究以海量多源异构数据为驱动的基于人工智能技术的设备状态分析方法,对于全面、及时、准确地掌握电力设备运行状态及其发展趋势有重要意义。论文首先介绍了基于数据驱动的新一代人工智能技术;然后,以当前电力设备状态数据所呈现的海量、多源异构的特性为出发点,针对图像、文本、时序这3种数据类型综述了基于人工智能的电力设备状态特征提取技术;其次,通过研究当前电力设备状态分析的总体需求,总结和讨论了数据驱动的人工智能技术在电力设备智能巡检、故障诊断、状态预测等典型业务场景中的应用研究现状;最后,探讨了现阶段数据驱动的人工智能技术在电力设备状态分析中面临的挑战性问题,并对相关技术的发展趋势进行了展望。 展开更多
关键词 人工智能 电力设备 数据驱动 状态分析 图像识别 故障诊断
下载PDF
基于条件深度卷积生成对抗网络的图像识别方法 被引量:144
7
作者 唐贤伦 杜一铭 +2 位作者 刘雨微 李佳歆 马艺玮 《自动化学报》 EI CSCD 北大核心 2018年第5期855-864,共10页
生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;... 生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;条件生成对抗网络(Conditional GAN,CGAN)在GAN的基础上加上条件扩展为条件模型.结合深度卷积生成对抗网络和条件生成对抗网络的优点,建立条件深度卷积生成对抗网络模型(Conditional-DCGAN,C-DCGAN),利用卷积神经网络强大的特征提取能力,在此基础上加以条件辅助生成样本,将此结构再进行优化改进并用于图像识别中,实验结果表明,该方法能有效提高图像的识别准确率. 展开更多
关键词 生成对抗网络 卷积神经网络 条件模型 特征提取 图像识别
下载PDF
基于卷积神经网络与迁移学习的油茶病害图像识别 被引量:143
8
作者 龙满生 欧阳春娟 +1 位作者 刘欢 付青 《农业工程学报》 EI CAS CSCD 北大核心 2018年第18期194-201,共8页
传统的植物病害图像识别准确率严重依赖于耗时费力的人工特征设计。该文利用深度卷积神经网络强大的特征学习和特征表达能力来自动学习油茶病害特征,并借助迁移学习方法将Alex Net模型在Image Net图像数据集上学习得到的知识迁移到油茶... 传统的植物病害图像识别准确率严重依赖于耗时费力的人工特征设计。该文利用深度卷积神经网络强大的特征学习和特征表达能力来自动学习油茶病害特征,并借助迁移学习方法将Alex Net模型在Image Net图像数据集上学习得到的知识迁移到油茶病害识别任务。对油茶叶片图像进行阈值分割、旋转对齐、尺度缩放等预处理后,按照病害特征由人工分为藻斑病、软腐病、煤污病、黄化病和健康叶5个类别。每个类别各选取750幅图像组成样本集,从样本集中随机选择80%的样本用作训练集,剩余20%用作测试集。利用随机裁剪、旋转变换和透视变换对训练集进行数据扩充,以模拟图像采集的不同视角和减少网络模型的过拟合。在Tensor Flow深度学习框架下,基于数据扩充前后的样本集,对Alex Net进行全新学习和迁移学习。试验结果表明,迁移学习能够明显提高模型的收敛速度和分类性能;数据扩充有助于增加数据的多样性,避免出现过拟合现象;在迁移学习和数据扩充方式下的分类准确率高达96.53%,对藻斑病、软腐病、煤污病、黄化病、健康叶5类病害的F1得分分别达到94.28%、94.67%、97.31%、98.34%和98.03%。该方法具有较高的识别准确率,对平移、旋转具有较强的鲁棒性,可为植物叶片病害智能诊断提供参考。 展开更多
关键词 病害 分类 作物 油茶病害 图像识别 深度学习 迁移学习
下载PDF
深度学习研究与进展 被引量:134
9
作者 孙志远 鲁成祥 +1 位作者 史忠植 马刚 《计算机科学》 CSCD 北大核心 2016年第2期1-8,共8页
深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理... 深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理论及应用的热潮。实践表明,深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,实现对数据更本质的刻画,同时深层模型具有更强的建模和推广能力。鉴于深度学习的优点及其广泛应用,对深度学习进行了较为系统的介绍,详细阐述了其产生背景、理论依据、典型的深度学习模型、具有代表性的快速学习算法、最新进展及实践应用,最后探讨了深度学习未来值得研究的方向。 展开更多
关键词 深度学习 机器学习 深层神经网络 图像识别 语音识别 自然语言处理
下载PDF
基于迁移学习的卷积神经网络玉米病害图像识别 被引量:128
10
作者 许景辉 邵明烨 +1 位作者 王一琛 韩文霆 《农业机械学报》 EI CAS CSCD 北大核心 2020年第2期230-236,253,共8页
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中... 为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在ImageNet图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95.33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。 展开更多
关键词 玉米病害 迁移学习 深度学习 图像识别 卷积神经网络
下载PDF
用于图象识别的图象代数特征抽取 被引量:71
11
作者 洪子泉 杨静宇 《自动化学报》 EI CSCD 北大核心 1992年第2期233-238,共6页
本文证明了图象的奇异值特征具有一系列代数和几何上的不变性以及对噪音的不敏感性,它是识别图象的有效特征。本文将奇异值特征用于人象识别问题。根据图象奇异值特征向量样本建立了Sammon最佳鉴别平面上的正态模式Bayes分类模型。实验... 本文证明了图象的奇异值特征具有一系列代数和几何上的不变性以及对噪音的不敏感性,它是识别图象的有效特征。本文将奇异值特征用于人象识别问题。根据图象奇异值特征向量样本建立了Sammon最佳鉴别平面上的正态模式Bayes分类模型。实验结果表明,奇异值特征向量具有良好的鉴别分离能力。 展开更多
关键词 图象识别 代数特征抽取 奇异值特征
下载PDF
人工智能的历史回顾和发展现状 被引量:112
12
作者 顾险峰 《自然杂志》 2016年第3期157-166,共10页
简略地回顾了人工智能的历史和发展现状。分析比较了人工智能两大领域:符号主义和连接主义,同时介绍了各个领域的主要原理和方法。着重回顾了深度学习的历史、复兴的原因和主要的应用。
关键词 人工智能 连接主义 符号主义 深度学习 图像识别 语音识别 神经网络
下载PDF
基于改进VGG卷积神经网络的棉花病害识别模型 被引量:109
13
作者 张建华 孔繁涛 +3 位作者 吴建寨 翟治芬 韩书庆 曹姗姗 《中国农业大学学报》 CAS CSCD 北大核心 2018年第11期161-171,共11页
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型... 为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。 展开更多
关键词 棉花 卷积神经网络 VGG网络 病害 图像识别
原文传递
基于卷积神经网络的田间多簇猕猴桃图像识别方法 被引量:108
14
作者 傅隆生 冯亚利 +3 位作者 Elkamil Tola 刘智豪 李瑞 崔永杰 《农业工程学报》 EI CAS CSCD 北大核心 2018年第2期205-211,共7页
为实现田间条件下快速、准确地识别多簇猕猴桃果实,该文根据猕猴桃的棚架式栽培模式,采用竖直向上获取果实图像的拍摄方式,提出一种基于Le Net卷积神经网络的深度学习模型进行多簇猕猴桃果实图像的识别方法。该文构建的卷积神经网络通... 为实现田间条件下快速、准确地识别多簇猕猴桃果实,该文根据猕猴桃的棚架式栽培模式,采用竖直向上获取果实图像的拍摄方式,提出一种基于Le Net卷积神经网络的深度学习模型进行多簇猕猴桃果实图像的识别方法。该文构建的卷积神经网络通过批量归一化方法,以Re LU为激活函数,Max-pooling为下采样方法,并采用Softmax回归分类器,对卷积神经网络结构进行优化。通过对100幅田间多簇猕猴桃图像的识别,试验结果表明:该识别方法对遮挡果实、重叠果实、相邻果实和独立果实的识别率分别为78.97%、83.11%、91.01%和94.78%。通过与5种现有算法进行对比试验,该文算法相对相同环境下的识别方法提高了5.73个百分点,且识别速度达到了0.27 s/个,识别速度较其他算法速度最快。证明了该文算法对田间猕猴桃图像具有较高的识别率和实时性,表明卷积神经网络在田间果实识别方面具有良好的应用前景。 展开更多
关键词 图像处理 图像识别 算法 深度学习 卷积神经网络 猕猴桃
下载PDF
基于机器视觉自然场景下成熟柑橘识别 被引量:102
15
作者 蔡健荣 周小军 +1 位作者 李玉良 范军 《农业工程学报》 EI CAS CSCD 北大核心 2008年第1期175-178,共4页
采用2R-G-B色差分量,通过Ostu自适应阈值算法进行图像分割,利用形态运算消除分割后随机噪声,并对分割区域进行标记,利用区域面积和区域最小外接矩形长宽比参数进一步去除背景区域。对于多果重叠问题,利用T=Sqrt(S×I)形成新的图像... 采用2R-G-B色差分量,通过Ostu自适应阈值算法进行图像分割,利用形态运算消除分割后随机噪声,并对分割区域进行标记,利用区域面积和区域最小外接矩形长宽比参数进一步去除背景区域。对于多果重叠问题,利用T=Sqrt(S×I)形成新的图像提取边界,再结合形态学运算实现分割。最后利用优化的圆形Hough变换提取目标图像的形心坐标及半径,恢复遮挡果形。经验证有95%果实能正确识别。 展开更多
关键词 机器视觉 成熟柑橘 图像识别 特征提取 圆形Hough变换
下载PDF
结合深度学习和随机森林的电力设备图像识别 被引量:100
16
作者 李军锋 王钦若 李敏 《高电压技术》 EI CAS CSCD 北大核心 2017年第11期3705-3711,共7页
为了解决电力系统海量非结构化图像数据智能化分析和识别这一问题,提出了一种结合深度学习和随机森林的电力系统关键电力设备图像识别方法。在特征提取方面,通过卷积神经网络提取了电力设备图像的特征;在识别算法方面,借鉴传统机器学习... 为了解决电力系统海量非结构化图像数据智能化分析和识别这一问题,提出了一种结合深度学习和随机森林的电力系统关键电力设备图像识别方法。在特征提取方面,通过卷积神经网络提取了电力设备图像的特征;在识别算法方面,借鉴传统机器学习方法的优势,提出了结合深度学习的随机森林分类方法。使用8 500幅电力设备图像对该方法进行了测试。研究结果表明:对于绝缘子、变压器、断路器、输电线电杆和输电线铁塔这5种电力设备,该方法的平均识别准确率达到了89.6%,比常规卷积神经网络分类器和传统随机森林分类器的平均识别准确率分别高出了6.8%和12.6%。该方法为海量非结构化电力设备图像智能化分析提供了一种新的解决办法。 展开更多
关键词 电力设备 图像识别 智能分析 深度学习 随机森林 卷积神经网络
下载PDF
苹果采摘机器人视觉系统研究进展 被引量:96
17
作者 王丹丹 宋怀波 何东健 《农业工程学报》 EI CAS CSCD 北大核心 2017年第10期59-69,共11页
视觉系统是苹果采摘机器人最重要的组成部分之一,它在一定程度上决定了苹果采摘机器人完成采摘任务的质量及速度。为明确苹果采摘机器人视觉系统所面临的挑战及未来研究方向,该文首先对世界各国现有苹果采摘机器人的研究情况从视觉传感... 视觉系统是苹果采摘机器人最重要的组成部分之一,它在一定程度上决定了苹果采摘机器人完成采摘任务的质量及速度。为明确苹果采摘机器人视觉系统所面临的挑战及未来研究方向,该文首先对世界各国现有苹果采摘机器人的研究情况从视觉传感器类型、视觉系统硬件组成、采摘成功率及作业时间等方面进行了概述,然后分别对现有苹果采摘机器人视觉系统中苹果图像分割方法、受着色度、光照、表面阴影、振荡、重叠及遮挡等影响下的苹果目标的识别与定位方法、苹果采摘机器人视觉系统对枝干等障碍物的识别方法以及视觉系统中双目视觉技术立体匹配问题进行了综述,进一步分析了苹果采摘机器人视觉系统中存在的问题,指出视觉系统结构的优化、视觉系统中智能算法的优化、提高视觉系统的实时性、振荡苹果目标的识别与定位、视觉系统受振动影响时苹果目标的识别与定位及提高视觉系统的性价比等方面将成为未来重点研究方向,为深入研究苹果采摘机器人视觉系统提供参考。 展开更多
关键词 机器人 图像识别 机械化 苹果 果实识别 目标定位 视觉系统
下载PDF
面向智能交互的图像识别技术综述与展望 被引量:94
18
作者 蒋树强 闵巍庆 王树徽 《计算机研究与发展》 EI CSCD 北大核心 2016年第1期113-122,共10页
视觉在人与人交互以及人与自然界的交互过程中起到非常重要的作用,让终端设备具有智能的视觉识别和交互能力是人工智能和计算机技术的核心挑战和远大目标之一.可以看到,近年来视觉识别技术发展飞速,新的创新技术不断涌现,新的研究问题... 视觉在人与人交互以及人与自然界的交互过程中起到非常重要的作用,让终端设备具有智能的视觉识别和交互能力是人工智能和计算机技术的核心挑战和远大目标之一.可以看到,近年来视觉识别技术发展飞速,新的创新技术不断涌现,新的研究问题不断被提出,面向智能交互的应用呈现出一些新的动态,正在不断刷新人们对此领域的原有认识.从视觉识别、视觉描述和视觉问答3个角度对图像识别技术进行综述,对基于深度学习的图像识别以及场景分类技术进行了具体介绍,对视觉描述和问答技术的最新技术进行了分析和讨论,同时对面向移动终端和机器人的视觉识别和交互应用进行了介绍,最后对该领域的未来研究趋势进行了分析. 展开更多
关键词 图像识别 智能的视觉识别 智能交互 视觉描述 视觉问答 深度学习
下载PDF
基于迁移学习的棉花叶部病虫害图像识别 被引量:90
19
作者 赵立新 侯发东 +2 位作者 吕正超 朱慧超 丁筱玲 《农业工程学报》 EI CAS CSCD 北大核心 2020年第7期184-191,共8页
针对传统图像识别方法准确率低、手工提取特征等问题,该研究以棉花叶部病虫害图像为研究对象,利用迁移学习算法并辅以数据增强技术,实现棉花叶部病虫害图像准确分类。首先改进AlexNet模型,利用PlantVillage大数据集训练取得预训练模型,... 针对传统图像识别方法准确率低、手工提取特征等问题,该研究以棉花叶部病虫害图像为研究对象,利用迁移学习算法并辅以数据增强技术,实现棉花叶部病虫害图像准确分类。首先改进AlexNet模型,利用PlantVillage大数据集训练取得预训练模型,在预训练模型上使用棉花病虫害数据微调参数,得到平均测试准确率为93.50%;然后使用数据增强技术扩充原始数据集,在预训练模型上再训练,得到最终平均测试准确率为97.16%。相同试验条件下,该研究方法较支持向量机(Support Vector Machine,SVM)和BP(Back Propagation,BP)神经网络以及深度卷积模型(VGG-19和GoogLeNet Inception v2)分类效果更好。试验结果表明,通过迁移学习能把从源领域(PlantVillage数据集)学习到的知识迁移到目标领域(棉花病虫害数据集),数据增强技术能有效缓解过拟合。该研究为农作物病虫害识别技术的发展提供了参考。 展开更多
关键词 卷积神经网络 图像识别 病害 图像增强 迁移学习 棉花
下载PDF
神经网络在图像处理中的应用 被引量:49
20
作者 许锋 卢建刚 孙优贤 《信息与控制》 CSCD 北大核心 2003年第4期344-351,共8页
近几年,随着神经网络理论的深入研究,神经网络技术的并行性计算能力、非线性映射和自适应能力等优点得到了充分的认识,各种神经网络模型在图像处理领域中得到了广泛的应用。本文对各种流行的神经网络模型在图像处理领域中的应用进行了汇... 近几年,随着神经网络理论的深入研究,神经网络技术的并行性计算能力、非线性映射和自适应能力等优点得到了充分的认识,各种神经网络模型在图像处理领域中得到了广泛的应用。本文对各种流行的神经网络模型在图像处理领域中的应用进行了汇总,根据图像处理的具体内容对这些应用进行分类叙述,阐明了神经网络技术在图像处理领域中的优点和不足之处,并对将来神经网络技术在图像处理领域中的应用提出了几点期望。 展开更多
关键词 图像处理 神经网络 非线性映射 图像重建 图像复原 图像增强 特征提取 图像识别
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部