Idiosyncratic drus-induced liver injury(IDILI)is an intrequent but potentially serious disease that develops the main reason for post-marketing safety warnings and withdrawals of drugs.Epimedii Folium(EF),the widely u...Idiosyncratic drus-induced liver injury(IDILI)is an intrequent but potentially serious disease that develops the main reason for post-marketing safety warnings and withdrawals of drugs.Epimedii Folium(EF),the widely used herbal medicine,has shown to cause idiosyncratic liver injury,but the underlying mechanisms are poorly understood.Increasing evidence has indicated that most cases of IDILI are immune mediated.Here,we report that icarisideⅡ(ICSⅡ),the major active and metabolic constituent of EF,causes idiosyncratic liver injury by promoting NLRP3 inflammasome activation.ICSⅡexacerbates NLRP3 inflammasome activation triggered by adenosine triphosphate(ATP)and nigericin,but not silicon dioxide(SiO2),monosodium urate(MSU)crystal or cytosolic lipopolysaccharide(LPS).Additionally,the activation of NLRC4 and AIM2 inflammasomes is not affected by ICSⅡ.Mechanistically,synergistic induction of mitochondrial reactive oxygen species(mtROS)is a crucial contributor to the enhancing effect of ICSⅡon ATP-or nigericin-induced NLRP3 inflammasome activation.Importantly,in vivo data show that a combination of non-hepatotoxic doses of LPS and ICSⅡcauses the increase of aminotransferase activity,hepatic inflammation and pyroptosis,which is attenuated by Nlrp3 deficiency or pretreatment with MCC950(a specific NLRP3 inflammasome inhibitor).In conclusion,these findings demonstrate that ICSⅡcauses idiosyncratic liver injury through enhancing NLRP3 inflammasome activation and suggest that ICSⅡmay be a risk factor and responsible for EF-induced liver injury.展开更多
OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy...OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generati展开更多
基金supported by National Natural Science Foundation of China(81874368,81630100,and 81903891)Beijing Nova Program(Z181100006218001,China)+1 种基金National Science&Technology Major Project“Key New Drug Creation and Manufacturing Program”(2017ZX09301022 and 2018ZX09101002-001-002,China)the Innovation Groups of the National Natural Science Foundation of China(81721002)
文摘Idiosyncratic drus-induced liver injury(IDILI)is an intrequent but potentially serious disease that develops the main reason for post-marketing safety warnings and withdrawals of drugs.Epimedii Folium(EF),the widely used herbal medicine,has shown to cause idiosyncratic liver injury,but the underlying mechanisms are poorly understood.Increasing evidence has indicated that most cases of IDILI are immune mediated.Here,we report that icarisideⅡ(ICSⅡ),the major active and metabolic constituent of EF,causes idiosyncratic liver injury by promoting NLRP3 inflammasome activation.ICSⅡexacerbates NLRP3 inflammasome activation triggered by adenosine triphosphate(ATP)and nigericin,but not silicon dioxide(SiO2),monosodium urate(MSU)crystal or cytosolic lipopolysaccharide(LPS).Additionally,the activation of NLRC4 and AIM2 inflammasomes is not affected by ICSⅡ.Mechanistically,synergistic induction of mitochondrial reactive oxygen species(mtROS)is a crucial contributor to the enhancing effect of ICSⅡon ATP-or nigericin-induced NLRP3 inflammasome activation.Importantly,in vivo data show that a combination of non-hepatotoxic doses of LPS and ICSⅡcauses the increase of aminotransferase activity,hepatic inflammation and pyroptosis,which is attenuated by Nlrp3 deficiency or pretreatment with MCC950(a specific NLRP3 inflammasome inhibitor).In conclusion,these findings demonstrate that ICSⅡcauses idiosyncratic liver injury through enhancing NLRP3 inflammasome activation and suggest that ICSⅡmay be a risk factor and responsible for EF-induced liver injury.
基金National Natural Science Foundation of China(81560666)Program for Excellent Young Talents of Zunyi Medical Uiverstity(15zy-002)+1 种基金Science and Technology Innovation Talent Team of Guizhou Province(20154023)the ″Hundred″Level of High-level Innovative Talents in Guizhou Province(QKHRCPT 20165684);and Program forChangjiang Scholars and Innovative ResearchTeam in University of China(IRT一17R113).
文摘OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generati