Sanya VHF radar (18.4°N, 109.6°E, dip latitude 12.8°N) at Hainan Island is the first coherent backscatter radar for sounding low-latitude ionospheric irregularities in the mainland of China. In this p...Sanya VHF radar (18.4°N, 109.6°E, dip latitude 12.8°N) at Hainan Island is the first coherent backscatter radar for sounding low-latitude ionospheric irregularities in the mainland of China. In this paper, we present the first results of low-latitude iono- spheric E and F region irregularities using the radar data during the period from February 2009 to March 2010. The Doppler velocity of radar echoes from E region field aligned irregularities (FAIs) was about several tens of meters per second, while the Doppler spectral width was appreciably larger than the velocity, and could reach one hundred meters per second, indicating that the observed E region FAls belonged to type 2 irregularities. The observations of range time intensity (RTI) maps of FAIs showed that E region irregularities most often occurred at night within the altitude range 85-115 kin, and were rarely observed at afternoon hours. The percentage occurrence of E region FAIs maximized during spring months (Feb.-May) with a peak value over 80%. The heights at which the strongest echo related FAIs occurred were mainly around 100 kin, lower than h'Es and the difference is mostly 10-20 km. December solstice seemed to be the minimum period of occurrence when the FA! ech- oes were commonly detected at a narrow altitude range 90-100 km. Moreover, simultaneous radar and GPS observations dur- ing spread F events in the pre-midnight hours of solar minimum revealed that significant GPS L band scintillations coincided with the appearance of F region plasma plume structures, which extended up to 450 km in altitude.展开更多
The relationship of daily accumulated cycle slip occurrence with the season is analyzed using the GPS data observed in six GPS stations located in China low latitude region in 2001. It is found that the seasonal depen...The relationship of daily accumulated cycle slip occurrence with the season is analyzed using the GPS data observed in six GPS stations located in China low latitude region in 2001. It is found that the seasonal dependence of cycle slip oc-currence is evident. The cycle slip mainly occurs during the periods of two equinox months (March to May and September to October), and some correlative changes of the cycle slip occurrences over all six stations are exhibited in some special days. Considering the diurnal dependence of cycle slip, it can be inferred that the cycle slip occurrence with certain elevation limitation is related with the iono-spheric irregularities over this region.展开更多
Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D fin...Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities. The one-quarter car mode,1 is used to represent the train as lumped masses connected by springs. The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency. The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number. The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface, including the irregularities on the track surface. Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation, using a conventional finite element procedure. The amplitude and wavelength are identified as two major parameters describing track irregularities. The irregularity amplitude has a direct impact on the vertical response for low-speed trains, both for short wavelength and long wavelength irregularities. Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases. For low-speed case, vibrations induced by track irregularities dominate far field responses. For high-speed case, the wavelength of track irregularities has very little effect on ground vibration at distances far from track center, and train's wheel axle weights becomes dominant.展开更多
From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events...From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events. During this period, one large positive ionospheric storm happened over the East-Asian region on Nov. 8, 2004. On Nov. 10, 2004, a strong spread-F was observed by the ionosonde located in the mid-latitude region of East China and Japan, and the ionospheric fluctuation over the ionosonde stations derived from GPS observation was also obvious. In this report, the characteristics of the spatial distribution of the ionosphere fluctuation and its temporal evolution are studied using the parameter of the rate of total electron content (ROT) derived from dual-frequency GPS measurement. Strong fluctuating activity of the ionosphere was found over the mid-latitude region in the southern and northern hemispheres between longitudes of 100°E and 180°E during the magnetic storm period on Nov. 10, 2004, and a regular movement of the disturbing region was observed. In the end, the reason of the ionospheric fluctuation during this magnetic storm is analyzed.展开更多
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo...This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.展开更多
Following a brief history and progress of ionospheric research, this paper presents a brief review of the recent developments in the understanding of two major phenomena in low and mid latitude ionosphere—the equator...Following a brief history and progress of ionospheric research, this paper presents a brief review of the recent developments in the understanding of two major phenomena in low and mid latitude ionosphere—the equatorial ionization anomaly(EIA) and involved equatorial plasma fountain(EPF) and ionospheric irregularities. Unlike the easy-to-understand misinterpretations, the EPF involves field perpendicular E×B plasma drift and field-aligned plasma diffusion acting together and plasma flowing in the direction of the resultant at all points along the field lines at all altitudes. The EIA is formed mainly from the removal of plasma from around the equator by the upward E×B drift creating the trough and consequently the crests with small accumulation of plasma at the crests when the crests are within ~±20° magnetic latitudes and no accumulation when they are beyond ~±25° magnetic latitudes. The strong EIA under magnetically active conditions arises from the simultaneous impulsive action of eastward prompt penetration electric field and equatorward neutral wind. Intense ionospheric irregularities develop in the post-sunset bottom-side equatorial ionosphere when it rises to high altitudes, and evolve nonlinearly into the topside. Pre-reversal enhancement(PRE) of the vertical upward E×B drift and its fluctuations amplified during PRE provide the driving force and seed, with neutral wind and gravity waves being the primary sources. At low solar activity especially in summer when fast varying PRE is absent, the slow varying gravity waves including large scale waves(LSW)seem to act as both driver and seed for weak irregularities. At mid latitudes, the irregularities are weak and associated with medium scale traveling ionospheric disturbances(MSTIDs). A low latitude minimum in the occurrence of the irregularities at March equinox predicted by theoretical models is identified. The minimum occurs on the poleward side of the EIA crest and shifts equatorward from ~25° magnetic latitudes at high solar activity to below 1展开更多
针对CH_4这种特别气体,对其实验结果运用数字化处理方法研究CH_4稳定性.在内径50.8 mm圆形管道内获得CH_4+2O_2预混气在不同初始压力条件下的胞格爆轰结果并使用烟膜记录,且测得的平均爆轰速度数据与CJ爆轰速度接近,在初始压力高于5 k P...针对CH_4这种特别气体,对其实验结果运用数字化处理方法研究CH_4稳定性.在内径50.8 mm圆形管道内获得CH_4+2O_2预混气在不同初始压力条件下的胞格爆轰结果并使用烟膜记录,且测得的平均爆轰速度数据与CJ爆轰速度接近,在初始压力高于5 k Pa时爆轰可稳定传播.烟膜上形成的三波点轨迹十分不规则.为减少人为误差,使用改进后的数字化处理烟膜图像的技术方法,从烟膜轨迹中得出柱状图及自相关函数结果,发现CH_4+2O_2是一种爆轰十分不稳定的气体,并给出CH_4+2O_2预混气的爆轰胞格尺寸及差距,结果显示人为测量结果偏大而数字化处理方法更为准确.这种方法能计算CH_4+2O_2预混气胞格尺寸及不稳定度,完善了定量化预混气不稳定程度的方法.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
All-sky meteor radars are primarily used for meteor observations. This paper reports the first observations of ionospheric Eregion field-aligned irregularities(FAIs) from a conventional all-sky meteor radar located at...All-sky meteor radars are primarily used for meteor observations. This paper reports the first observations of ionospheric Eregion field-aligned irregularities(FAIs) from a conventional all-sky meteor radar located at Wuhan(31°N, 114°E) for the period of March–June 2018. E-region FAI echoes evident in range-time intensity(RTI) maps show quasiperiodic striations with positive and negative slopes, which are consistent with multiple FAI structures moving across the wide beam of the meteor radar. A statistical analysis shows that out of a total of 111 d, there are 73 d with E-region FAI echoes detected by the meteor radar. The FAI events correspond well with the presence of sporadic-E layers which provide the necessary plasma density gradient for the development of gradient drift instability producing FAIs. The results demonstrate the capability of conventional meteor radars to make simultaneous routine observations of meteors and ionospheric E-region FAIs through incorporating RTI and spectral analysis into the online realtime data processing. Meteor radar observations could potentially address the limitations of ionospheric radars, which cannot provide simultaneous measurements of neutral winds and irregularity structures, and thereby contribute to better understanding of the dynamical processes producing E-region irregularities.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41074113, 40904038, 40774091, 41174136)Chinese Academy of Sciences (Grant No. KZCX2-YW-Y10)
文摘Sanya VHF radar (18.4°N, 109.6°E, dip latitude 12.8°N) at Hainan Island is the first coherent backscatter radar for sounding low-latitude ionospheric irregularities in the mainland of China. In this paper, we present the first results of low-latitude iono- spheric E and F region irregularities using the radar data during the period from February 2009 to March 2010. The Doppler velocity of radar echoes from E region field aligned irregularities (FAIs) was about several tens of meters per second, while the Doppler spectral width was appreciably larger than the velocity, and could reach one hundred meters per second, indicating that the observed E region FAls belonged to type 2 irregularities. The observations of range time intensity (RTI) maps of FAIs showed that E region irregularities most often occurred at night within the altitude range 85-115 kin, and were rarely observed at afternoon hours. The percentage occurrence of E region FAIs maximized during spring months (Feb.-May) with a peak value over 80%. The heights at which the strongest echo related FAIs occurred were mainly around 100 kin, lower than h'Es and the difference is mostly 10-20 km. December solstice seemed to be the minimum period of occurrence when the FA! ech- oes were commonly detected at a narrow altitude range 90-100 km. Moreover, simultaneous radar and GPS observations dur- ing spread F events in the pre-midnight hours of solar minimum revealed that significant GPS L band scintillations coincided with the appearance of F region plasma plume structures, which extended up to 450 km in altitude.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40674089, 40636032)National Basic Research Program of China (Grant No. 2006CB806306)Project of Beijing Education Committee (Grant No. XK100010404)
文摘The relationship of daily accumulated cycle slip occurrence with the season is analyzed using the GPS data observed in six GPS stations located in China low latitude region in 2001. It is found that the seasonal dependence of cycle slip oc-currence is evident. The cycle slip mainly occurs during the periods of two equinox months (March to May and September to October), and some correlative changes of the cycle slip occurrences over all six stations are exhibited in some special days. Considering the diurnal dependence of cycle slip, it can be inferred that the cycle slip occurrence with certain elevation limitation is related with the iono-spheric irregularities over this region.
基金Project supported by the National Key Technology R&D Program of the Ministry of Science and Technology of China(No.2009BAG12A01-B12-3)the National Natural Science Foundation of China(No.51178418)the Technology Promotion Program from the Ministry of Railway of China(No.2008G005-D)
文摘Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities. The one-quarter car mode,1 is used to represent the train as lumped masses connected by springs. The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency. The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number. The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface, including the irregularities on the track surface. Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation, using a conventional finite element procedure. The amplitude and wavelength are identified as two major parameters describing track irregularities. The irregularity amplitude has a direct impact on the vertical response for low-speed trains, both for short wavelength and long wavelength irregularities. Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases. For low-speed case, vibrations induced by track irregularities dominate far field responses. For high-speed case, the wavelength of track irregularities has very little effect on ground vibration at distances far from track center, and train's wheel axle weights becomes dominant.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41174134 and 40904036)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB811405)the State Key Laboratory of Space Weather
文摘From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events. During this period, one large positive ionospheric storm happened over the East-Asian region on Nov. 8, 2004. On Nov. 10, 2004, a strong spread-F was observed by the ionosonde located in the mid-latitude region of East China and Japan, and the ionospheric fluctuation over the ionosonde stations derived from GPS observation was also obvious. In this report, the characteristics of the spatial distribution of the ionosphere fluctuation and its temporal evolution are studied using the parameter of the rate of total electron content (ROT) derived from dual-frequency GPS measurement. Strong fluctuating activity of the ionosphere was found over the mid-latitude region in the southern and northern hemispheres between longitudes of 100°E and 180°E during the magnetic storm period on Nov. 10, 2004, and a regular movement of the disturbing region was observed. In the end, the reason of the ionospheric fluctuation during this magnetic storm is analyzed.
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 51735012 and 11790283
文摘This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.
基金supported by National Natural Science Foundation of China (41621063, 41774161)the Open Research Project of Large Research Infrastructures of CAS-"Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project"
文摘Following a brief history and progress of ionospheric research, this paper presents a brief review of the recent developments in the understanding of two major phenomena in low and mid latitude ionosphere—the equatorial ionization anomaly(EIA) and involved equatorial plasma fountain(EPF) and ionospheric irregularities. Unlike the easy-to-understand misinterpretations, the EPF involves field perpendicular E×B plasma drift and field-aligned plasma diffusion acting together and plasma flowing in the direction of the resultant at all points along the field lines at all altitudes. The EIA is formed mainly from the removal of plasma from around the equator by the upward E×B drift creating the trough and consequently the crests with small accumulation of plasma at the crests when the crests are within ~±20° magnetic latitudes and no accumulation when they are beyond ~±25° magnetic latitudes. The strong EIA under magnetically active conditions arises from the simultaneous impulsive action of eastward prompt penetration electric field and equatorward neutral wind. Intense ionospheric irregularities develop in the post-sunset bottom-side equatorial ionosphere when it rises to high altitudes, and evolve nonlinearly into the topside. Pre-reversal enhancement(PRE) of the vertical upward E×B drift and its fluctuations amplified during PRE provide the driving force and seed, with neutral wind and gravity waves being the primary sources. At low solar activity especially in summer when fast varying PRE is absent, the slow varying gravity waves including large scale waves(LSW)seem to act as both driver and seed for weak irregularities. At mid latitudes, the irregularities are weak and associated with medium scale traveling ionospheric disturbances(MSTIDs). A low latitude minimum in the occurrence of the irregularities at March equinox predicted by theoretical models is identified. The minimum occurs on the poleward side of the EIA crest and shifts equatorward from ~25° magnetic latitudes at high solar activity to below 1
文摘针对CH_4这种特别气体,对其实验结果运用数字化处理方法研究CH_4稳定性.在内径50.8 mm圆形管道内获得CH_4+2O_2预混气在不同初始压力条件下的胞格爆轰结果并使用烟膜记录,且测得的平均爆轰速度数据与CJ爆轰速度接近,在初始压力高于5 k Pa时爆轰可稳定传播.烟膜上形成的三波点轨迹十分不规则.为减少人为误差,使用改进后的数字化处理烟膜图像的技术方法,从烟膜轨迹中得出柱状图及自相关函数结果,发现CH_4+2O_2是一种爆轰十分不稳定的气体,并给出CH_4+2O_2预混气的爆轰胞格尺寸及差距,结果显示人为测量结果偏大而数字化处理方法更为准确.这种方法能计算CH_4+2O_2预混气胞格尺寸及不稳定度,完善了定量化预混气不稳定程度的方法.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金supported by the National Natural Science Foundation of China(Grant Nos.41727803,41574149,41621063)
文摘All-sky meteor radars are primarily used for meteor observations. This paper reports the first observations of ionospheric Eregion field-aligned irregularities(FAIs) from a conventional all-sky meteor radar located at Wuhan(31°N, 114°E) for the period of March–June 2018. E-region FAI echoes evident in range-time intensity(RTI) maps show quasiperiodic striations with positive and negative slopes, which are consistent with multiple FAI structures moving across the wide beam of the meteor radar. A statistical analysis shows that out of a total of 111 d, there are 73 d with E-region FAI echoes detected by the meteor radar. The FAI events correspond well with the presence of sporadic-E layers which provide the necessary plasma density gradient for the development of gradient drift instability producing FAIs. The results demonstrate the capability of conventional meteor radars to make simultaneous routine observations of meteors and ionospheric E-region FAIs through incorporating RTI and spectral analysis into the online realtime data processing. Meteor radar observations could potentially address the limitations of ionospheric radars, which cannot provide simultaneous measurements of neutral winds and irregularity structures, and thereby contribute to better understanding of the dynamical processes producing E-region irregularities.