现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分...现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分步提取了IQ相关特征及时域特征,通过自适应平均池化获得了各通道特征均值,并用单个全连接层进行分类。实验结果表明,较传统卷积网络结构,所提网络在多种场景下的识别准确率更高,并且计算量更小。展开更多
目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识...目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。展开更多
文摘现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分步提取了IQ相关特征及时域特征,通过自适应平均池化获得了各通道特征均值,并用单个全连接层进行分类。实验结果表明,较传统卷积网络结构,所提网络在多种场景下的识别准确率更高,并且计算量更小。
文摘目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。