A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season...A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…展开更多
利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合...利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合对中国近40 a(1961—2000年)地面气温和降水的模拟能力,结果表明:最新全球模式对中国地区地面气温年变化及空间分布的模拟结果均较好,但在整个模拟区域地面气温模拟值系统性偏低,东部地区模拟效果好于中西部;对于降水,大部分模式能模拟出中国降水的年变化及空间分布特征,但模拟的区域性差别较大,多数模式对中国东部季风区夏季雨带北抬的过程有一定的模拟能力,但模拟雨带位置偏北。新一代全球模式能模拟出温度的线性变化趋势,但对温度及降水的年际变率模拟能力较低。比较多种评估指标得出,模式集合对温度的模拟效果最好,模式UKMO-HadCM3对降水的模拟效果最好。展开更多
文摘A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4 emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China. The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66 Mha were estimated to be 2.44 Tg CH…
文摘利用中国区域550个站点逐日地面气温及降水资料,评估了参与政府间气候变化专门委员会第四次报告(the fourth assessment report of the intergovernmental panel on climate change,IPCCAR4)的13个新一代全球气候系统模式及多模式集合对中国近40 a(1961—2000年)地面气温和降水的模拟能力,结果表明:最新全球模式对中国地区地面气温年变化及空间分布的模拟结果均较好,但在整个模拟区域地面气温模拟值系统性偏低,东部地区模拟效果好于中西部;对于降水,大部分模式能模拟出中国降水的年变化及空间分布特征,但模拟的区域性差别较大,多数模式对中国东部季风区夏季雨带北抬的过程有一定的模拟能力,但模拟雨带位置偏北。新一代全球模式能模拟出温度的线性变化趋势,但对温度及降水的年际变率模拟能力较低。比较多种评估指标得出,模式集合对温度的模拟效果最好,模式UKMO-HadCM3对降水的模拟效果最好。