Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provid...Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.展开更多
Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2);however,they are limited with respect to eliciting local immunity in the respi...Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2);however,they are limited with respect to eliciting local immunity in the respiratory tract,which is the primary infection site for SARS-CoV-2.To overcome the limitations of intramuscular vaccines,we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain(RBD)of the spike protein of SARSCoV-2,named CA4-d NS1-n CoV-RBD(d NS1-RBD).A preclinical study showed that in hamsters challenged 1d after single-dose vaccination or 9 months after booster vaccination,d NS1-RBD largely mitigated lung pathology,with no loss of body weight.Moreover,such cellular immunity is relatively unimpaired for the most concerning SARS-Co V-2 variants,especially for the latest Omicron variant.In addition,this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses.The protective immune mechanism of d NS1-RBD could be attributed to the innate immune response in the nasal epithelium,local RBD-specific T cell response in the lung,and RBD-specific Ig A and Ig G response.Thus,this study demonstrates that the intranasally delivered d NS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection,compensating limitations of current intramuscular vaccines.展开更多
The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could...The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.展开更多
基金funded by the National Natural Science Foundation of China(Nos.31571016 and 81402866)
文摘Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.
基金supported by the National Program on Key Research Project of China(2020YFC0842600)the National Natural Science Foundation of China(82041038,81871651,and 81991491)+1 种基金the Major Science and Technology Program of Fujian Province(2020YZ014001)the Natural Science Foundation of Fujian Province(2021J02006)。
文摘Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2(SARS-CoV-2);however,they are limited with respect to eliciting local immunity in the respiratory tract,which is the primary infection site for SARS-CoV-2.To overcome the limitations of intramuscular vaccines,we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain(RBD)of the spike protein of SARSCoV-2,named CA4-d NS1-n CoV-RBD(d NS1-RBD).A preclinical study showed that in hamsters challenged 1d after single-dose vaccination or 9 months after booster vaccination,d NS1-RBD largely mitigated lung pathology,with no loss of body weight.Moreover,such cellular immunity is relatively unimpaired for the most concerning SARS-Co V-2 variants,especially for the latest Omicron variant.In addition,this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses.The protective immune mechanism of d NS1-RBD could be attributed to the innate immune response in the nasal epithelium,local RBD-specific T cell response in the lung,and RBD-specific Ig A and Ig G response.Thus,this study demonstrates that the intranasally delivered d NS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection,compensating limitations of current intramuscular vaccines.
基金supported by Proj.PRIN prot.2007AF3XH4_005,"Fondazione Cassa di Risparmio di Roma",and"Ministero della Salute"Grant No.RF-FGB-2005-150198
文摘The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.