期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于词加权LDA模型的恶意文件检测方法 被引量:1
1
作者 徐建国 王旭阳 《计算机应用与软件》 北大核心 2024年第3期313-320,共8页
恶意文件中往往含有出现频率较低、但表征能力更好的特征码,传统的方法未能将这一类特征提取出来。针对该问题,提出一种基于词加权LDA模型的恶意文件检测方法,该方法通过反汇编对样本进行预处理,采用改进的KeyGraph算法(IKG)提取“重点... 恶意文件中往往含有出现频率较低、但表征能力更好的特征码,传统的方法未能将这一类特征提取出来。针对该问题,提出一种基于词加权LDA模型的恶意文件检测方法,该方法通过反汇编对样本进行预处理,采用改进的KeyGraph算法(IKG)提取“重点词”,这类词具有更好的特征表征能力,再利用优化的点互信息(OPMI),算出各“重点词”权重,构建词字典,然后将该词加权方法扩展到LDA模型,建立IKG-OPMI-LDA(IOL)模型完成分类,并采用Gibbs Sampling进行参数估计。实验结果表明,相较于其他方法,该方法的分类准确率有明显提高,分类效率更好,并且提取的特征具有更高的区分度,与主题相关度更高。 展开更多
关键词 恶意文件 LDA ikg 加权模型 文档分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部