The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of...The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of GEO and IGSO to achieve regional coverage.In order to discuss the performances of the Combined-GEO-IGSO constellation,the performances of coverage,elevation,diversity,and transmission are simulated in China and surrounding regions by Satellite Tool Kit(STK).The simulation results show that:the combined constellation can reach higher multi-satellite coverage and higher communication elevation in China and surrounding areas;the Doppler shift,delay,and propagation loss of this constellation have little impact on the system.As regional coverage constellation,the Combined-GEO-IGSO is feasible.展开更多
Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effecti...Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effectively solves the problem of poor observation geometry for GEO satellites.The laser radial evaluation thus confirms that precision is as good as less than 0.1 m.In the case of joint orbit determination,solving the empirical acceleration can reduce errors introduced by the imprecise solar radiation pressure model used for Chinese satellites.This method also improves the accuracy of orbit prediction in the radial direction.The ephemeris accuracy is thus improved and the ephemeris can provide a better service to users with navigation and positioning requirements.展开更多
The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imag...The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer(IES) onboard a Chinese navigation satellite in the inclined GEO orbit(IGSO) was introduced. The IES instrument is developed by the team in Peking University(BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis(PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.展开更多
An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures t...An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures the spectra of the energetic electrons with the energy range of 50–600 keV in nine directions. In this study, Monte Carlo simulations of the BD-IES sensor head were performed using Geant4 and the corresponding characteristic responses to the isotropic energetic particles were derived. The effective geometric factors were estimated using the typical electron and proton spectra in the GEO orbit and the corresponding simulated sensor head responses. It was found that the average effective geometric factors of nine directions are close to the nominal geometric factors calculated with the traditional method, but the effective geometric factor decreases as the center energy of the energy channel decreases. The BD-IES sensor head also responses to the energetic protons, but the average contamination rate of all 72 channels is about 2%, which means that the proton contamination is acceptable. The spectra of the energetic electrons measured by BD-IES are derived using the effective geometric factors of the sensor head and are comparable with the spectra measured by the magnetic electron ion spectrometer(MagEIS) instrument onboard Van Allen Probes.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60972061,No. 60972062,and No. 61032004)the National High Technology Research and Development Program of China ("863" Program) (No. 2008AA12A204)the Natural Science Foundation of Jiangsu Province(BK2009060)
文摘The Combined-GEO-IGSO constellation is the combination of Geostationary Earth Orbit(GEO) satellite and Inclining GeoSynchronous Orbit(IGSO) satellite.The Combined-GEO-IGSO constellation can integrate the advantages of GEO and IGSO to achieve regional coverage.In order to discuss the performances of the Combined-GEO-IGSO constellation,the performances of coverage,elevation,diversity,and transmission are simulated in China and surrounding regions by Satellite Tool Kit(STK).The simulation results show that:the combined constellation can reach higher multi-satellite coverage and higher communication elevation in China and surrounding areas;the Doppler shift,delay,and propagation loss of this constellation have little impact on the system.As regional coverage constellation,the Combined-GEO-IGSO is feasible.
基金supported by the National Natural Science Foundation of China (Grant No.41074020)
文摘Experiments and analyses are carried out for GEO and joint GEO/IGSO precise orbit determination using data recorded by China's regional tracking network.Results show that joint GEO/IGSO orbit determination effectively solves the problem of poor observation geometry for GEO satellites.The laser radial evaluation thus confirms that precision is as good as less than 0.1 m.In the case of joint orbit determination,solving the empirical acceleration can reduce errors introduced by the imprecise solar radiation pressure model used for Chinese satellites.This method also improves the accuracy of orbit prediction in the radial direction.The ephemeris accuracy is thus improved and the ephemeris can provide a better service to users with navigation and positioning requirements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41374167 & 41421003)Major Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2012CB825603)
文摘The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer(IES) onboard a Chinese navigation satellite in the inclined GEO orbit(IGSO) was introduced. The IES instrument is developed by the team in Peking University(BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis(PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41374167, 41421003)the Major Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2012CB825603)
文摘An imaging energetic electron spectrometer built by the Peking University team(BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures the spectra of the energetic electrons with the energy range of 50–600 keV in nine directions. In this study, Monte Carlo simulations of the BD-IES sensor head were performed using Geant4 and the corresponding characteristic responses to the isotropic energetic particles were derived. The effective geometric factors were estimated using the typical electron and proton spectra in the GEO orbit and the corresponding simulated sensor head responses. It was found that the average effective geometric factors of nine directions are close to the nominal geometric factors calculated with the traditional method, but the effective geometric factor decreases as the center energy of the energy channel decreases. The BD-IES sensor head also responses to the energetic protons, but the average contamination rate of all 72 channels is about 2%, which means that the proton contamination is acceptable. The spectra of the energetic electrons measured by BD-IES are derived using the effective geometric factors of the sensor head and are comparable with the spectra measured by the magnetic electron ion spectrometer(MagEIS) instrument onboard Van Allen Probes.