期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于MapReduce的半监督近邻传播算法 被引量:4
1
作者 冯兴杰 王文超 《计算机应用研究》 CSCD 北大核心 2018年第7期2011-2014,共4页
近邻传播(affinity propagation,AP)算法是一种具有较高准确度的聚类算法,但是其具有较高的时间复杂度,且无法有效聚类结构松散数据。针对这两个问题,提出了一种基于MapReduce的半监督近邻传播算法(MRSAP)。首先利用MapReduce编程框架,... 近邻传播(affinity propagation,AP)算法是一种具有较高准确度的聚类算法,但是其具有较高的时间复杂度,且无法有效聚类结构松散数据。针对这两个问题,提出了一种基于MapReduce的半监督近邻传播算法(MRSAP)。首先利用MapReduce编程框架,在各个数据节点上运行AP算法,得到局部的聚类中心,以及代表每一个局部聚类中心成为全局聚类中心可能性的决策系数;然后综合局部聚类中心进行全局的AP聚类,其中初始参考度的选取依据输入的决策系数;最后通过引入IGP聚类评价指标比较聚类效果,引导算法向结果最优方向运行。实验结果表明该算法在处理不同大小、不同类型数据集时均具有良好的效率和扩展性,且具有较高的聚类精度。 展开更多
关键词 近邻传播 聚类 半监督 igp(类内比例) MAPREDUCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部