Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of...Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of a hydrolysate is de- termined by its peptide composition. However, the peptide composition of a hydrolysate depends on proteolytic enzyme and the hydrolysis conditions. In this study, the effect of process conditions on the ACE inhibitory activity of rice dregs hydrolyzed with a trypsin was investigated systematically using response surface methodology. It was shown that the ACE inhibitory activity of rice dregs hydrolysates could be controlled by regulation of five process conditions. Hydrolysis conditions for optimal ACE inhibition were defined using the response surface model of fractional factorial design (FFD), steepest ascent design, and central composite design (CCD).展开更多
Short peptides based on the tripeptides, Leu-Arg-Pro and Leu-Lys-Pro, were synthesized by microwave assisted solid-phase synthesis method, in order to make a search for potential inhibitors for angiotensin I-convertin...Short peptides based on the tripeptides, Leu-Arg-Pro and Leu-Lys-Pro, were synthesized by microwave assisted solid-phase synthesis method, in order to make a search for potential inhibitors for angiotensin I-converting enzyme(ACE) with minimum side effects in the treatment of hypertension. One peptide with the sequence Leu-Arg-Pro-Phe-Phe shows the strongest inhibition towards ACE with an IC50 value of 0.26 μmol/L in vitro. The study of structure-activity relationship shows that the introduction of a bulky group into the N-terminal of this series of inhibitors may enlarge steric hindrance, resulting in the poor inhibitory activity towards ACE. The inhibitory activity decreased in turn when L-Pro, D-Pro or Ac6c was at the C-terminal respectively. The binding interaction between each of these inhibitors and testicular ACE(tACE) was performed by molecular docking. The results suggest that Leu-Arg-Pro-Phe-Phe mainly occupied the S1 subsite of tACE, and made contact with tACE via seven H-bonds. It appeared that the site on the peptide that bound with tACE was influenced by the configuration of the amino acid, L or D-form, at the C-terminal of the peptide.展开更多
文摘Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of a hydrolysate is de- termined by its peptide composition. However, the peptide composition of a hydrolysate depends on proteolytic enzyme and the hydrolysis conditions. In this study, the effect of process conditions on the ACE inhibitory activity of rice dregs hydrolyzed with a trypsin was investigated systematically using response surface methodology. It was shown that the ACE inhibitory activity of rice dregs hydrolysates could be controlled by regulation of five process conditions. Hydrolysis conditions for optimal ACE inhibition were defined using the response surface model of fractional factorial design (FFD), steepest ascent design, and central composite design (CCD).
基金Supported by the National High Technology Research and Development Program of China(No.2006AA10Z331)
文摘Short peptides based on the tripeptides, Leu-Arg-Pro and Leu-Lys-Pro, were synthesized by microwave assisted solid-phase synthesis method, in order to make a search for potential inhibitors for angiotensin I-converting enzyme(ACE) with minimum side effects in the treatment of hypertension. One peptide with the sequence Leu-Arg-Pro-Phe-Phe shows the strongest inhibition towards ACE with an IC50 value of 0.26 μmol/L in vitro. The study of structure-activity relationship shows that the introduction of a bulky group into the N-terminal of this series of inhibitors may enlarge steric hindrance, resulting in the poor inhibitory activity towards ACE. The inhibitory activity decreased in turn when L-Pro, D-Pro or Ac6c was at the C-terminal respectively. The binding interaction between each of these inhibitors and testicular ACE(tACE) was performed by molecular docking. The results suggest that Leu-Arg-Pro-Phe-Phe mainly occupied the S1 subsite of tACE, and made contact with tACE via seven H-bonds. It appeared that the site on the peptide that bound with tACE was influenced by the configuration of the amino acid, L or D-form, at the C-terminal of the peptide.