期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于近红外高光谱技术和特征波谱分析方法的竹类判别研究
被引量:
5
1
作者
楚秉泉
赵艳茹
何勇
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2017年第6期1718-1722,共5页
竹叶含有丰富的功能性成分,具有良好的抗氧化、调节血脂、抗癌、保护心脑血管等功效,在食品和药品等领域具有较高的应用价值,但不同品种的竹叶其功能性成分差异较大。传统对于竹类品种的鉴别主要是通过观察竹叶大小、纹理、竹枝分枝和...
竹叶含有丰富的功能性成分,具有良好的抗氧化、调节血脂、抗癌、保护心脑血管等功效,在食品和药品等领域具有较高的应用价值,但不同品种的竹叶其功能性成分差异较大。传统对于竹类品种的鉴别主要是通过观察竹叶大小、纹理、竹枝分枝和竹竿高度等,效率低且错误率较高,因此,快速准确的区分不同品种的竹叶,是竹类资源开发和加工过程中的重要任务之一。采用近红外高光谱(900~1 700nm)技术对我国不同产地的12种竹叶进行鉴别分析。用主成分分析(PCA)对竹叶进行聚类分析,应用主成分因子中Xloading(XL)和random frog(RF)算法进行特征波段的提取,分别得到6条(931,945,1 217,1 318,1 473和1 653nm)和12条(1 052,1 140,1 163,1 177,1 180,1 193,1 230,1 241,1 477,1 483,1 629和1 649nm)特征波段,并基于全波段(238条波长)及采用以上算法所得的特征波段建立最小二乘-支持向量机(LSSVM)判别分析模型,其识别率分别为99.17%(全波段),95.83%(XL算法),95.83%(RF算法)。最后,采用受试者工作特征曲线(receiver operating characteristic curve,ROC curve)对LS-SVM模型的判别效果进行验证,结果表明,曲线下面积(AUC)均在0.98以上,说明近红外高光谱结合LS-SVM可以很好地实现竹类的鉴别分析,这为竹叶的食用和药用价值的开发利用提供理论参考。
展开更多
关键词
高光谱技术
竹叶
判别分析模型
化学计量学
下载PDF
职称材料
题名
基于近红外高光谱技术和特征波谱分析方法的竹类判别研究
被引量:
5
1
作者
楚秉泉
赵艳茹
何勇
机构
浙江大学生物系统工程与食品科学学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2017年第6期1718-1722,共5页
基金
国家高技术研究发展计划(2013AA102301)
国家自然科学基金项目(31471417)资助
文摘
竹叶含有丰富的功能性成分,具有良好的抗氧化、调节血脂、抗癌、保护心脑血管等功效,在食品和药品等领域具有较高的应用价值,但不同品种的竹叶其功能性成分差异较大。传统对于竹类品种的鉴别主要是通过观察竹叶大小、纹理、竹枝分枝和竹竿高度等,效率低且错误率较高,因此,快速准确的区分不同品种的竹叶,是竹类资源开发和加工过程中的重要任务之一。采用近红外高光谱(900~1 700nm)技术对我国不同产地的12种竹叶进行鉴别分析。用主成分分析(PCA)对竹叶进行聚类分析,应用主成分因子中Xloading(XL)和random frog(RF)算法进行特征波段的提取,分别得到6条(931,945,1 217,1 318,1 473和1 653nm)和12条(1 052,1 140,1 163,1 177,1 180,1 193,1 230,1 241,1 477,1 483,1 629和1 649nm)特征波段,并基于全波段(238条波长)及采用以上算法所得的特征波段建立最小二乘-支持向量机(LSSVM)判别分析模型,其识别率分别为99.17%(全波段),95.83%(XL算法),95.83%(RF算法)。最后,采用受试者工作特征曲线(receiver operating characteristic curve,ROC curve)对LS-SVM模型的判别效果进行验证,结果表明,曲线下面积(AUC)均在0.98以上,说明近红外高光谱结合LS-SVM可以很好地实现竹类的鉴别分析,这为竹叶的食用和药用价值的开发利用提供理论参考。
关键词
高光谱技术
竹叶
判别分析模型
化学计量学
Keywords
hyperspectral
technique
bamboo
leaves
discriminant analysis
models
chemometrics
methods
分类号
O433.4 [机械工程—光学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于近红外高光谱技术和特征波谱分析方法的竹类判别研究
楚秉泉
赵艳茹
何勇
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2017
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部