Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da...With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.展开更多
Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(H...Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.展开更多
目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合...目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87. 87%和98. 18%,与其他分类算法对比有较明显的性能优势。结论实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。展开更多
Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great ...Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility.展开更多
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
基金supported by the National Key Research and Development Project(No.2020YFC1512000)the General Projects of Key R&D Programs in Shaanxi Province(No.2020GY-060)Xi’an Science&Technology Project(No.2020KJRC 0126)。
文摘With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods.
基金National Natural Science Foundation of China(No.62001098)Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020D-33)。
文摘Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.
文摘目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87. 87%和98. 18%,与其他分类算法对比有较明显的性能优势。结论实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。
基金supported by the National Natural Science Foundation of China (Grant Nos. 61771496, 42030111, and 61976234)partially supported by the National Program on Key Research Projects of China (Grant No. 2017YFC1502706)
文摘Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility.