期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
高光谱图像空谱特征提取综述 被引量:39
1
作者 叶珍 白璘 何明一 《中国图象图形学报》 CSCD 北大核心 2021年第8期1737-1763,共27页
由于高光谱图像包含了丰富的光谱、空间和辐射信息,且具有光谱接近连续、图谱合一的特性,可用于地质勘探、精细农业、生态环境、城市遥感以及军事目标检测等领域的目标精准分类与识别。对高光谱图像进行空谱特征提取是遥感领域的研究热... 由于高光谱图像包含了丰富的光谱、空间和辐射信息,且具有光谱接近连续、图谱合一的特性,可用于地质勘探、精细农业、生态环境、城市遥感以及军事目标检测等领域的目标精准分类与识别。对高光谱图像进行空谱特征提取是遥感领域的研究热点和前沿课题之一。传统空谱特征提取方法对高光谱图像分类的计算量和样本需求小、理论可解释性好、抗噪声能力强,但应用于分类的精度受限于特征来源;基于深度学习的高光谱图像空谱特征提取方法虽然计算量和样本需求大,但是由于深层空谱特征的表达能力更好,可以大幅度提高分类器的性能。为了便于对高光谱图像空谱特征提取领域进行更深入有效的探索,本文系统综述了相关研究进展。首先,概述了空间纹理与形态学特征提取、空间邻域信息获取及空间信息后处理等传统高光谱空谱特征提取方法的原理,对大量的已有工作进行了梳理、分析与总结。然后,从深度空谱特征提取角度出发,介绍了当前流行的卷积神经网络、图卷积神经网络及跨场景多源数据模型的结构特点及研究进展,分析、评价了基于深度学习的网络模型对高光谱图像空谱特征提取的优势及问题所在。最后,对该研究领域的未来相关发展提出建议并进行了展望。 展开更多
关键词 高光谱图像(hsi) 空谱特征提取 卷积神经网络(CNN) 图卷积网络(GCN) 多源数据融合 深度神经网络
原文传递
极限学习机在高光谱遥感图像分类中的应用 被引量:10
2
作者 李铁 张新君 《光电工程》 CAS CSCD 北大核心 2016年第11期62-68,75,共8页
针对高光谱遥感图像的分类问题,本文引入极限学习的思想,提出了基于分层局部感受野的极限学习机的高光谱分类方法。该方法利用光谱特征的局部相关性,采用两层的分层结构提取高光谱图像中的抽象表示和不变特征,可以取得更好的分类性能。... 针对高光谱遥感图像的分类问题,本文引入极限学习的思想,提出了基于分层局部感受野的极限学习机的高光谱分类方法。该方法利用光谱特征的局部相关性,采用两层的分层结构提取高光谱图像中的抽象表示和不变特征,可以取得更好的分类性能。同时还分析了算法的不同参数对分类性能的影响。在两个广泛使用的真实高光谱数据集上进行实验,同当前一些典型的方法做比较,结果表明该方法具有更高的分类性能与较快的训练速度。 展开更多
关键词 遥感 极限学习机 高光谱图像 图像 分类
下载PDF
高光谱图像超分辨率重建技术研究进展 被引量:3
3
作者 聂江涛 张磊 +4 位作者 魏巍 闫庆森 丁晨 陈国超 张艳宁 《中国图象图形学报》 CSCD 北大核心 2023年第6期1685-1697,共13页
不同于传统图像(如灰度图像、RGB图像等)专注于保存目标场景的空间信息,高光谱图像蕴含丰富的空—谱信息,不仅可以保存目标的空间信息,还可以保存具有高可辨性的光谱信息。因此高光谱图像广泛应用于多种计算机视觉和遥感图像任务中,如... 不同于传统图像(如灰度图像、RGB图像等)专注于保存目标场景的空间信息,高光谱图像蕴含丰富的空—谱信息,不仅可以保存目标的空间信息,还可以保存具有高可辨性的光谱信息。因此高光谱图像广泛应用于多种计算机视觉和遥感图像任务中,如目标检测、场景分类和目标追踪等。然而,在高光谱图像获取以及重建过程中仍然存在许多问题与瓶颈。如传统高光谱成像仪器在成像过程中通常会引入噪声,且获得的图像往往具有较低的空间分辨率,极大地影响了高光谱图像的质量,对后续数据分析任务造成了极大的困难。近年来,高光谱图像超分辨率重建技术研究得到了极大的发展,现有超分辨率重建方法可以大致分为两类,一类为空间超分辨率重建方法,可以通过直接提升高光谱图像的空间分辨率来获得高质量高光谱图像;另一类为光谱超分辨率重建方法,可以通过提升高空间分辨率图像的光谱分辨率来生成高质量高光谱图像。本文从高光谱图像超分辨率重建领域的新设计、新方法和应用场景出发,通过综合国内外前沿文献来梳理该领域的主要发展,重点论述高光谱图像超分辨率重建领域的发展现状、前沿动态、热点问题及趋势。 展开更多
关键词 高光谱图像(hsi) 超分辨率重建 单图超分辨 融合超分辨 光谱超分辨
原文传递
多任务的高光谱图像卷积稀疏编码去噪网络 被引量:1
4
作者 涂坤 熊凤超 +1 位作者 傅冠夷蛮 陆建峰 《中国图象图形学报》 CSCD 北大核心 2024年第1期280-292,共13页
目的高光谱图像由于其成像机理、设备误差和成像环境等因素导致采集到的数据存在噪声。传统稀疏表示方法需要把高光谱图像划分为一系列的重叠局部图像块进行表示,通过对重叠图像块去噪结果进行平均,实现整体图像去噪。这种局部—整体去... 目的高光谱图像由于其成像机理、设备误差和成像环境等因素导致采集到的数据存在噪声。传统稀疏表示方法需要把高光谱图像划分为一系列的重叠局部图像块进行表示,通过对重叠图像块去噪结果进行平均,实现整体图像去噪。这种局部—整体去噪方法不可避免地会破坏高光谱图像空间关系,产生较差的去噪效果和视觉瑕疵。本文利用卷积算子的平移不变性,采用卷积稀疏编码(convolutional sparse coding,CSC)对高光谱图像进行整体表示,保留不同图像块之间的空间关系,提升高光谱图像去噪性能。方法将每个波段去噪看做单任务,采用卷积稀疏编码描述单波段的局部空间结构关系。通过共享稀疏编码系数,实现不同波段之间的全局光谱关联关系建模,形成多任务卷积稀疏编码模型。多任务卷积稀疏编码模型一方面可以实现高光谱图像的空间—光谱关系联合建模;另一方面,对高光谱图像进行整体处理,有效地利用图像块之间的关系,因此具有很强的去噪能力。借鉴深度学习强大的表征能力,将多任务卷积稀疏编码模型的算法迭代过程通过深度展开(deep unfolding)方式转化为端到端可学习深度神经网络,即多任务卷积稀疏编码网络(multitask convolutional sparse coding network,MTCSC-Net),进一步提升模型去噪能力和运行效率。结果在ICVL和CAVE(Columbia Imaging and Vision Laboratory)数据集上进行了仿真实验,在Urban数据集上进行了真实数据实验,并与8种方法进行比较,表明了本文算法的有效性。与传统基于图像块的稀疏去噪算法相比,在CAVE数据集上本文算法的峰值信噪比(peak signal-to-noise ratio,PSNR)提升1.38 dB;在ICVL数据集上提升0.64 dB。结论提出的多任务卷积稀疏编码网络能有效利用高光谱图像的空间—光谱关联信息,具有更强的去噪能力。 展开更多
关键词 高光谱图像(hsi) 图像去噪 卷积稀疏编码(CSC) 多任务学习 深度展开
原文传递
Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification 被引量:7
5
作者 Zhaohui XUE Xiangyu NIE 《Journal of Geodesy and Geoinformation Science》 2022年第1期73-90,共18页
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed... Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance. 展开更多
关键词 hyperspectral image(hsi) spectral-spatial classification Low-Rank and Sparse Representation(LRSR) Adaptive Neighborhood Regularization(ANR)
下载PDF
一种基于协同稀疏和全变差的高光谱线性解混方法 被引量:8
6
作者 陈允杰 葛魏东 孙乐 《自动化学报》 EI CSCD 北大核心 2018年第1期116-128,共13页
稀疏分解是高光谱图像(Hyperspectral image,HSI)解混中的常用方法,为了克服传统稀疏解混方法只重视挖掘空间相关性而忽视稀疏性精确刻画的缺点,本文提出一种新的基于协同稀疏和全变差(Total variation,TV)相结合的高光谱空谱联合线性... 稀疏分解是高光谱图像(Hyperspectral image,HSI)解混中的常用方法,为了克服传统稀疏解混方法只重视挖掘空间相关性而忽视稀疏性精确刻画的缺点,本文提出一种新的基于协同稀疏和全变差(Total variation,TV)相结合的高光谱空谱联合线性解混方法,从而进一步提高解混的精度.该方法基于已知光谱库的高光谱稀疏线性回归模型,利用TV正则项对高光谱邻域像元间的相关性进行约束;同时,协同稀疏性被用来刻画丰度系数的行稀疏性,从而表明协同稀疏先验对空谱联合解混精度的提高至关重要;最后采用交替方向乘子法求解模型.模拟高光谱数据实验结果定量地验证本文方法能够比现有同类方法获得更精确的解混结果,同时真实高光谱数据实验结果定性地验证了本文方法的有效性. 展开更多
关键词 高光谱图像 协同稀疏 TV正则项 线性光谱解混 交替方向乘子法
下载PDF
图信号处理在高光谱图像处理领域的典型应用 被引量:3
7
作者 刘娜 李伟 陶然 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1529-1540,共12页
高光谱图像(HSI)具有纳米级的光谱分辨能力且同时对地物目标的光谱维和空间维进行联合成像的优势,能够精细化感知场景目标的本征判别属性,在遥感探测、医疗诊断和国防安全等具有重要应用价值,是高精度遥感探测的科技制高点之一。不同于... 高光谱图像(HSI)具有纳米级的光谱分辨能力且同时对地物目标的光谱维和空间维进行联合成像的优势,能够精细化感知场景目标的本征判别属性,在遥感探测、医疗诊断和国防安全等具有重要应用价值,是高精度遥感探测的科技制高点之一。不同于传统1维时间信号、2维图像信号,高光谱图像具有多阶、高维的信号属性。为解决传统信号处理方法在高光谱图像处理领域中的不足,图信号处理(GSP)理论与方法被逐渐引入高光谱图像处理与解译等任务中。该文以短综述的形式,介绍了图信号处理在高光谱图像处理领域的理论发展并列举了在高光谱特征提取、图像重构和解译分类3个主要方面的典型应用。最后,进一步探讨了该方向未来发展所面临的挑战和相应解决办法。 展开更多
关键词 图信号处理 高光谱图像 遥感 高维信号
下载PDF
基于遗传算法和深度神经网络的近红外高光谱检测猪肉新鲜度
8
作者 谢安国 纪思媛 +2 位作者 李月玲 王满生 张玉 《食品工业科技》 CAS 北大核心 2024年第17期345-351,共7页
为系统评估基于深度学习的智能辅助高光谱成像系统在猪肉新鲜度指标检测中的效果,采集了猪肉在4℃冷藏12 d中挥发性盐基氮(volatile basic nitrogen,TVB-N)、菌落总数(total viable count,TVC)以及900~2500 nm近红外光谱数据。基于Pytho... 为系统评估基于深度学习的智能辅助高光谱成像系统在猪肉新鲜度指标检测中的效果,采集了猪肉在4℃冷藏12 d中挥发性盐基氮(volatile basic nitrogen,TVB-N)、菌落总数(total viable count,TVC)以及900~2500 nm近红外光谱数据。基于Python的TensorFlow和Keras平台,对高光谱数据进行处理,建立了深度神经网络的定量检测模型。并利用遗传算法(GA)选择与猪肉新鲜度相关的特征光谱波段。结果表明,遗传算法选取波段对光谱模型的性能有明显提升。当光谱波段数达到35和50时,GA+ANN模型预测精度高于全波段的线性回归模型。TVC为预测指标的预测性能优于TVB-N,TVC测试集最佳R_(p)^(2)为0.877,RMSEP为0.575;预测TVB-N的最佳R_(p)^(2)为0.826,RMSEP为1.01。此外,通过研究还发现,遗传算法优选的近红外光谱波段与肉品的O-H,N-H,C=O等分子振动吸收带有较高的吻合度。本研究为处理近红外和高光谱数据提供了新的方法,也为猪肉及其他肉品新鲜度快速无损检测提供了技术参考。 展开更多
关键词 猪肉品质 新鲜度 高光谱成像(hsi) 近红外光谱(NIR) TensorFlow 遗传算法 神经网络
下载PDF
面向多源遥感数据分类的尺度自适应融合网络
9
作者 刘晓敏 余梦君 +2 位作者 乔振壮 王浩宇 邢长达 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3693-3702,共10页
多模态融合方法能够利用不同模态的互补特性有效提升地物分类的准确性,近年来成为各领域的研究热点。现有多模态融合方法被成功应用于面向高光谱图像(HSI)和激光雷达(LiDAR)的联合分类任务。然而,现有的研究仍面临许多挑战,包括地物间... 多模态融合方法能够利用不同模态的互补特性有效提升地物分类的准确性,近年来成为各领域的研究热点。现有多模态融合方法被成功应用于面向高光谱图像(HSI)和激光雷达(LiDAR)的联合分类任务。然而,现有的研究仍面临许多挑战,包括地物间空间依赖关系难捕获,多模态数据中判别性信息难获取等。为应对上述挑战,该文将多模态、多尺度、多视角特征融合整合到一个统一的框架中,提出一种尺度自适应融合网络(SAFN)。首先,提出动态多尺度图模块以捕获地物复杂的空间依赖关系,提升模型对不规则地物以及尺度迥异地物的适应能力。其次,基于激光雷达和高光谱图像的互补特性,约束同一空间近邻区域内的地物具有相近的特征表示,获取判别性遥感特征。然后,提出多模态空-谱融合模块,建立多模态、多尺度、多视角特征间的信息交互,捕获各特征间可共享的类辨识信息,为地物分类任务提供具有判别性的融合特征。最后,将融合特征输入分类器中得到类别概率得分,对地物类别进行预测。为验证方法的有效性,该文在3个数据集(Houston,Trento,MUUFL)上进行了实验。实验结果表明,与现有主流算法相比较,SAFN在多源遥感数据分类任务中取得了最佳的视觉效果和最高精度。 展开更多
关键词 特征融合 高光谱图像 激光雷达 分类 图学习
下载PDF
基于双字典的高光谱与多光谱图像融合
10
作者 周子轩 方帅 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第10期1355-1361,共7页
在遥感领域,高分辨率高光谱图像(high-resolution hyperspectral images,HR-HSI)的获取极具挑战,通过融合低分辨率高光谱图像(low-resolution hyperspectral images,LR-HSI)与高分辨率多光谱图像(high-resolution multispectral images,... 在遥感领域,高分辨率高光谱图像(high-resolution hyperspectral images,HR-HSI)的获取极具挑战,通过融合低分辨率高光谱图像(low-resolution hyperspectral images,LR-HSI)与高分辨率多光谱图像(high-resolution multispectral images,HR-MSI)获得HR-HSI是较为经济的方式。基于光谱字典的传统融合算法在保持光谱连续性上效果优异,但空间信息的表现力仍有增强的潜力。为此,文章提出一种基于双字典的图像融合算法。首先利用LR-HSI和HR-MSI分别训练出光谱字典和空间字典,然后基于光谱字典和空间字典分别在光谱域和空间域得到光谱型高分辨率高光谱图像(spectral high-resolution hyperspectral images,Spc-HR-HSI)和空间型高分辨率高光谱图像(spatial high-resolution hyperspectral images,Spa-HR-HSI),并利用双域图像在迭代更新中相互约束,彼此促进,直至收敛,最终融合出HR-HSI。由于高光谱图像本身存在较强的低秩特性,该文利用局部低秩与非局部低秩约束,进一步增强目标图像的融合质量。实验结果表明,该文提出的算法融合结果优于其他对比算法。 展开更多
关键词 高光谱图像(hsi) 图像融合 双字典 光谱字典 空间字典 低秩
下载PDF
基于局部敏感判别宽度学习的高光谱图像分类 被引量:1
11
作者 曹鹤玲 宋昌隆 楚永贺 《计算机应用研究》 CSCD 北大核心 2023年第4期1239-1245,1262,共8页
宽度学习系统(BLS)以其良好的学习性能与泛化能力,在高光谱图像(HSI)分类中得到了广泛应用。然而宽度学习系统仅关注各类样本的可分性,忽略了样本之间的相对关系以及所蕴涵的判别信息,在一定程度上限制了宽度学习系统在高光谱图像分类... 宽度学习系统(BLS)以其良好的学习性能与泛化能力,在高光谱图像(HSI)分类中得到了广泛应用。然而宽度学习系统仅关注各类样本的可分性,忽略了样本之间的相对关系以及所蕴涵的判别信息,在一定程度上限制了宽度学习系统在高光谱图像分类任务中的性能。为此,提出一种局部敏感判别的宽度学习系统(LSDBLS)方法。该方法通过引入局部敏感判别分析考虑标记样本的判别信息与数据样本的局部流形结构,通过标记样本构建类内图和类间图来表征数据样本之间的相对关系。在此基础上,将类内图和类间图引入到宽度学习系统的目标函数中,通过最小化类内图以及最大化类间图,使得同类样本尽可能地聚集,不同类的样本尽可能地远离,增强LSDBLS对数据特征的判别能力。通过在三个HSI数据集上的实验结果表明,LSDBLS取得了良好的效果。 展开更多
关键词 宽度学习系统 高光谱图像 类间流形结构 类内流形结构
下载PDF
关联子域对齐网络的跨域高光谱图像分类
12
作者 王浩宇 程玉虎 王雪松 《中国图象图形学报》 CSCD 北大核心 2023年第10期3255-3266,共12页
目的近年来,深度网络成功应用于高光谱图像分类。然而,难以获取充足的标记数据大大限制了深度网络的充分训练,进而导致网络对高光谱图像的分类能力下降。为解决以上困难,提出一种关联子域对齐网络的高光谱图像迁移分类方法。方法基于深... 目的近年来,深度网络成功应用于高光谱图像分类。然而,难以获取充足的标记数据大大限制了深度网络的充分训练,进而导致网络对高光谱图像的分类能力下降。为解决以上困难,提出一种关联子域对齐网络的高光谱图像迁移分类方法。方法基于深度迁移学习方法,通过对两域分布进行多角度、全面领域适应的同时将两域分类器进行差异适配。一方面,利用关联对齐从整体上对齐了两域的二阶统计量信息,适配了两域的全局分布;另一方面,利用局部最大均值差异对齐了相关子域的一阶统计量信息,适配了两域的局部分布。另外,构造一种分类器适配模块并将其加入所提网络中,通过对两域分类器差异进行适配,进一步增强网络的领域适应效果。结果从4组真实高光谱数据集上的实验结果可看出:在分别采集于不同区域的高光谱图像数据对上,所提方法的精度比排名第2的分类方法高出1.01%、0.42%、0.73%和0.64%。本文方法的Kappa系数也取得最优结果。结论与现有主流算法相比较,所提网络能够在整体和局部、一阶和二阶统计量上分别对两域进行有效对齐,进而充分利用在源域上训练好的分类器完成对目标域高光谱数据的跨域分类。 展开更多
关键词 高光谱图像(hsi) 分类 迁移学习 深度学习 跨域
原文传递
Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
13
作者 Yongqiang Xi Zhen Ye 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期13-22,共10页
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da... With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods. 展开更多
关键词 hyperspectral image(hsi) light detection and ranging(LiDAR) multi-scale feature classification
下载PDF
基于空谱特征融合的高光谱RX异常检测方法 被引量:4
14
作者 刘轩 李向阳 +2 位作者 何芳 赵建伟 张峰干 《系统仿真学报》 CAS CSCD 北大核心 2021年第12期2891-2900,共10页
针对高光谱异常检测算法没有充分利用高光谱图像的空间信息,检测精度受到限制的问题,提出一种融合空谱信息的RX(Fusing Spatial and Spectral Reed-Xiaoli,FSSRX)异常检测算法来提高高光谱的异常检测精度。FSSRX算法利用EMAP(Extended M... 针对高光谱异常检测算法没有充分利用高光谱图像的空间信息,检测精度受到限制的问题,提出一种融合空谱信息的RX(Fusing Spatial and Spectral Reed-Xiaoli,FSSRX)异常检测算法来提高高光谱的异常检测精度。FSSRX算法利用EMAP(Extended Multi-attribute Profiles)方法提取出高光谱图像的空间特征,在空间特征上进行RX异常检测,计算空间特征中每个像素点的异常得分;直接对原始高光谱图像进行RX异常检测,计算在光谱特征中每个像素点的异常得分;将在空间特征和光谱特征中得到的异常得分进行有效融合,以提高检测精度。仿真结果显示,FSSRX算法能够有效提高检测精度,降低虚警率,与其他几种算法相比,检测性能更佳。 展开更多
关键词 高光谱图像 空谱融合 RX算法 EMAP特征 异常检测
下载PDF
Hypergraph Regularized Deep Autoencoder for Unsupervised Unmixing Hyperspectral Images
15
作者 张泽兴 杨斌 《Journal of Donghua University(English Edition)》 CAS 2023年第1期8-17,共10页
Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(H... Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms. 展开更多
关键词 hyperspectral image(hsi) spectral unmixing deep autoencoder(AE) hypergraph learning
下载PDF
使用深度对抗子空间聚类实现高光谱波段选择 被引量:3
16
作者 曾梦 宁彬 +1 位作者 蔡之华 谷琼 《计算机应用》 CSCD 北大核心 2020年第2期381-385,共5页
高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提... 高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提下降低分类的复杂度。该网络通过在编码器和解码器中引入自表达层来模仿传统子空间聚类的"自表达"属性,充分运用光谱信息和非线性特征转换得到波段之间的相互关系,解决传统波段选择方法无法同时考虑光谱和空间信息的问题。同时,引入对抗学习来监督自编码器的样本表示和子空间聚类,使得子空间聚类具有更好的自表达性能。为了使网络性能更优,加入拉普拉斯正则化来考虑反映图像几何信息的局部流形结构。实验在两个公开的高光谱数据集上进行,所提出的方法和几种主流的波段选择方法进行对比的结果表明,DASC方法在分类精度上优于对比方法,其选出的波段子集可以满足应用需求。 展开更多
关键词 高光谱图像 波段选择 深度对抗子空间聚类 拉普拉斯正则化 深度学习
下载PDF
一种改进多尺度三维残差网络的高光谱图像分类方法 被引量:3
17
作者 郑姗姗 刘文 +3 位作者 单锐 赵静一 江国乾 张智 《计算机工程》 CAS CSCD 北大核心 2020年第12期215-221,共7页
针对高光谱图像训练样本较少、光谱维度高导致分类精度较低的问题,提出一种利用改进多尺度三维残差卷积神经网络的高光谱图像分类方法。选择合适的卷积步长对网络首层光谱降维并提取浅层特征,使用三维卷积滤波器组中最大池化层减少整体... 针对高光谱图像训练样本较少、光谱维度高导致分类精度较低的问题,提出一种利用改进多尺度三维残差卷积神经网络的高光谱图像分类方法。选择合适的卷积步长对网络首层光谱降维并提取浅层特征,使用三维卷积滤波器组中最大池化层减少整体网络训练参数量,改进多尺度滤波器组和三维残差单元提取图像深层局部空间-光谱联合特征,并将其输入Softmax函数层预测类别标签样本。实验结果表明,该方法在Indian Pines和Pavia University高光谱数据集上的总体分类精度分别为99.33%和99.83%,与SVM、SAE等方法相比,分类判别特征提取更准确,具有更高的图像分类精度。 展开更多
关键词 三维卷积块 卷积神经网络 高光谱图像 多尺度滤波器 残差单元
下载PDF
提高小样本高光谱图像分类性能的变维卷积神经网络 被引量:3
18
作者 刘万军 尹岫 +1 位作者 曲海成 刘腊梅 《中国图象图形学报》 CSCD 北大核心 2019年第9期1604-1618,共15页
目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合... 目的为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87. 87%和98. 18%,与其他分类算法对比有较明显的性能优势。结论实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。 展开更多
关键词 卷积神经网络 高光谱图像 小样本数据 变维特征提取 空—谱联合分类
原文传递
Efficient phase-induced gabor cube selection and weighted fusion for hyperspectral image classification 被引量:2
19
作者 CAI RunLin LIU ChenYing LI Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期778-792,共15页
Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great ... Spectral-spatial Gabor filtering(GF),a robust feature extraction tool,has been widely investigated for hyperspectral image(HSI)classification.Recently,a new type of GF method,named phase-induced GF,which showed great potential for HSI feature extraction,was proposed.Although this new type of GF possibly better explores the frequency characteristics of HSIs,with a new parameter added,it generates a much larger amount of features,yielding redundancies and noises,and is therefore risky to severely deteriorate the efficiency and accuracy of classification.To tackle this problem,we fully exploit phase-induced Gabor features efficiently,proposing an efficient phase-induced Gabor cube selection and weighted fusion(EPCS-WF)method for HSI classification.Specifically,to eliminate the redundancies and noises,we first select the most representative Gabor cubes using a newly designed energy-based phase-induced Gabor cube selection(EPCS)algorithm before feeding them into classifiers.Then,a weighted fusion(WF)strategy is adopted to integrate the mutual information residing in different feature cubes to generate the final predictions.Our experimental results obtained on four well-known HSI datasets demonstrate that the EPCS-WF method,while only adopting four selected Gabor cubes for classification,delivers better performance as compared with other Gabor-based methods.The code of this work is available at https://github.com/cairlin5/EPCS-WF-hyperspectral-image-classification for the sake of reproducibility. 展开更多
关键词 hyperspectral image(hsi)classification Gabor filtering(GF) phase offset feature selection weighted fusion(WF)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部