If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron...If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron flux can be regarded as a constant value. The relationship between the production of the hydrogen characteristic gamma-rays and its content is nonlinear. In this paper, we use MCNP (Monte Carlo N-Particle Transport code) to simulate the relationship and analyze it. In practical measurement of the characteristic gamma-ray, it's impossible to get the net count. Therefore, we use the experiment to obtain the relationship between the hydrogen content and the total count of its characteristic gamma-rays. If we use the relationship combined with the simulation result to calculate the hydrogen content, the metrical precision can be much increased. The deviation of hydrogen content between NIPGA and chemical analysis is less than 0.25%, which meets the requirement of coal industry.展开更多
基金Supported by Innovation Fund for Small Technology-based Firms (99C26212210085)
文摘If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron flux can be regarded as a constant value. The relationship between the production of the hydrogen characteristic gamma-rays and its content is nonlinear. In this paper, we use MCNP (Monte Carlo N-Particle Transport code) to simulate the relationship and analyze it. In practical measurement of the characteristic gamma-ray, it's impossible to get the net count. Therefore, we use the experiment to obtain the relationship between the hydrogen content and the total count of its characteristic gamma-rays. If we use the relationship combined with the simulation result to calculate the hydrogen content, the metrical precision can be much increased. The deviation of hydrogen content between NIPGA and chemical analysis is less than 0.25%, which meets the requirement of coal industry.