Spinal cord injury(SCI)is a serious traumatic disease of the central nervous system,which can give rise to the loss of motor and sensory function.Due to its complex pathological mechanism,the treatment of this disease...Spinal cord injury(SCI)is a serious traumatic disease of the central nervous system,which can give rise to the loss of motor and sensory function.Due to its complex pathological mechanism,the treatment of this disease still faces a huge challenge.Hydrogels with good biocompatibility and biodegradability can well imitate the extracellular matrix in the microenvironment of spinal cord.Hydrogels have been regarded as promising SCI repair material in recent years and continuous studies have confirmed that hydrogel-based therapy can effectively eliminate inflammation and promote spinal cord repair and regeneration to improve SCI.In this review,hydrogel-based multimodal therapeutic strategies to repair SCI are provided,and a combination of hydrogel scaffolds and other therapeutic modalities are discussed,with particular emphasis on the repair mechanism of SCI.展开更多
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as hi...Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as high loading capability and permeability of drug.Such polymeric patches are classified into microneedles(MNs),hydrogel,microcapsule,microsphere and fiber depending on the formed morphology.The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity,promoting on-demand and regulated drug administration,thus providing the great potential to their clinic translation.In this review,the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed.The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed,including diabetes therapy,wound healing,dermatological disease therapy,bone regeneration,cardiac repair,hair repair,obesity therapy and some immune disease therapy.Alternatively,the limitations,latest challenges and future perspectives of such biomedical therapeutic devices are addressed.展开更多
Egg white(EW) is one of the most common and high-quality nutritional proteins. A novel three-step green processing technology is constructed to process homogeneous EW into a mechanically robust EW hydrogel scaffold(EW...Egg white(EW) is one of the most common and high-quality nutritional proteins. A novel three-step green processing technology is constructed to process homogeneous EW into a mechanically robust EW hydrogel scaffold(EWHS) with excellent biocompatibility. The homogeneous EW is first treated with stream to form a hydrogel, then slowly dehydrated to form a fragile and almost transparent EW glass, and finally annealed into an EWHS. The EWHS is water-insoluble, wet soft and translucent and has a porous network structure, and its pore size distribution is between 0.1–1.0 μm. The tensile strength in wet state is as high as 5.0 MPa, the elongation at break is about 93%, and the swelling rate is about 85%. The order of the enzymatically residual rate of these EWHSs is pepsin > neutral protease > papain> trypsin > alkaline protease. Mouse L929 cells can adhere,proliferate, and grow well on the EWHSs. After EWHS was implanted in rats for three weeks, the levels of IL-6, TNF-α, and NF-κB inflammatory factors did not change significantly in comparison with the pseudo-operated and normal groups. This novel EW hydrogel biomaterial has potential applications in medical 3 D tissue engineering materials, such as tendons, soft tissues, and in vivo implants.展开更多
At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide m...At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration.This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis.Two differently originated collagens were used for the scaffold formation.During this work the structural and mechanical characteristics of the scaffold were studied.It was found that,depending on the origin of collagen,scaffolds possess differences in their structural and mechanical characteristics.Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells.Hence,scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.展开更多
Loss of function of large tissues is an urgent clinical problem. Although the artificial microfluidic network fabricated in large tis- sue-engineered constructs has great promise, it is still difficult to develop an e...Loss of function of large tissues is an urgent clinical problem. Although the artificial microfluidic network fabricated in large tis- sue-engineered constructs has great promise, it is still difficult to develop an efficient vessel-like design to meet the requirements of the biomimetic vascular network for tissue engineering applications. In this study, we used a facile approach to fabricate a branched and multi-level vessel-like network in a large muscle scaffolds by combining stereolithography (SL) technology and enzymatic crosslinking mechanism. The morphology of microchannel cross-sections was characterized using micro-computed tomography. The square cross-sections were gradually changed to a seamless circular microfluidic network, which is similar to the natural blood vessel. In the different micro-channels, the velocity greatly affected the attachment and spread of Human Umbilical Vein Endothelial Cell (HUVEC)-Green Fluorescent Protein (GFP). Our study demonstrated that the branched and multi-level microchannel network simulates biomimetic microenvironments to promote endothelialization. The gelatin scaffolds in the circular vessel-like networks will likely support myoblast and surrounding tissue for clinical use.展开更多
文摘Spinal cord injury(SCI)is a serious traumatic disease of the central nervous system,which can give rise to the loss of motor and sensory function.Due to its complex pathological mechanism,the treatment of this disease still faces a huge challenge.Hydrogels with good biocompatibility and biodegradability can well imitate the extracellular matrix in the microenvironment of spinal cord.Hydrogels have been regarded as promising SCI repair material in recent years and continuous studies have confirmed that hydrogel-based therapy can effectively eliminate inflammation and promote spinal cord repair and regeneration to improve SCI.In this review,hydrogel-based multimodal therapeutic strategies to repair SCI are provided,and a combination of hydrogel scaffolds and other therapeutic modalities are discussed,with particular emphasis on the repair mechanism of SCI.
基金the Young Individual Research Grants(YIRG)(Grant No.A2084c0168)Singapore and A*STAR Central Funds(Grant No.C211718004),Singapore.
文摘Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as high loading capability and permeability of drug.Such polymeric patches are classified into microneedles(MNs),hydrogel,microcapsule,microsphere and fiber depending on the formed morphology.The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity,promoting on-demand and regulated drug administration,thus providing the great potential to their clinic translation.In this review,the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed.The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed,including diabetes therapy,wound healing,dermatological disease therapy,bone regeneration,cardiac repair,hair repair,obesity therapy and some immune disease therapy.Alternatively,the limitations,latest challenges and future perspectives of such biomedical therapeutic devices are addressed.
基金supported by the China Agriculture Research System (Grant No. CARS-18-ZJ0502)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Egg white(EW) is one of the most common and high-quality nutritional proteins. A novel three-step green processing technology is constructed to process homogeneous EW into a mechanically robust EW hydrogel scaffold(EWHS) with excellent biocompatibility. The homogeneous EW is first treated with stream to form a hydrogel, then slowly dehydrated to form a fragile and almost transparent EW glass, and finally annealed into an EWHS. The EWHS is water-insoluble, wet soft and translucent and has a porous network structure, and its pore size distribution is between 0.1–1.0 μm. The tensile strength in wet state is as high as 5.0 MPa, the elongation at break is about 93%, and the swelling rate is about 85%. The order of the enzymatically residual rate of these EWHSs is pepsin > neutral protease > papain> trypsin > alkaline protease. Mouse L929 cells can adhere,proliferate, and grow well on the EWHSs. After EWHS was implanted in rats for three weeks, the levels of IL-6, TNF-α, and NF-κB inflammatory factors did not change significantly in comparison with the pseudo-operated and normal groups. This novel EW hydrogel biomaterial has potential applications in medical 3 D tissue engineering materials, such as tendons, soft tissues, and in vivo implants.
文摘At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration.This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis.Two differently originated collagens were used for the scaffold formation.During this work the structural and mechanical characteristics of the scaffold were studied.It was found that,depending on the origin of collagen,scaffolds possess differences in their structural and mechanical characteristics.Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells.Hence,scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.
基金This work was supported by National Natural Science Foundation of China (Grant No. 51375371) and the High-Tech Projects of China (Grant Nos. 2015AA020303 and 2015AA042503).
文摘Loss of function of large tissues is an urgent clinical problem. Although the artificial microfluidic network fabricated in large tis- sue-engineered constructs has great promise, it is still difficult to develop an efficient vessel-like design to meet the requirements of the biomimetic vascular network for tissue engineering applications. In this study, we used a facile approach to fabricate a branched and multi-level vessel-like network in a large muscle scaffolds by combining stereolithography (SL) technology and enzymatic crosslinking mechanism. The morphology of microchannel cross-sections was characterized using micro-computed tomography. The square cross-sections were gradually changed to a seamless circular microfluidic network, which is similar to the natural blood vessel. In the different micro-channels, the velocity greatly affected the attachment and spread of Human Umbilical Vein Endothelial Cell (HUVEC)-Green Fluorescent Protein (GFP). Our study demonstrated that the branched and multi-level microchannel network simulates biomimetic microenvironments to promote endothelialization. The gelatin scaffolds in the circular vessel-like networks will likely support myoblast and surrounding tissue for clinical use.