The Canadian Nuclear Safety Commission(CNSC), Canada’s nuclear regulator, conducts regulatory research in order to develop independent knowledge on safety aspects related to the deep geological disposal of radioactiv...The Canadian Nuclear Safety Commission(CNSC), Canada’s nuclear regulator, conducts regulatory research in order to develop independent knowledge on safety aspects related to the deep geological disposal of radioactive wastes. In Canada, the Cobourg limestone of the Michigan Basin is currently considered as a potential host formation for geological disposal. The understanding of the hydromechanical behavior of such a host rock is one of the essential requirements for the assessment of its performance as a barrier against radionuclide migration. The excavation of galleries and shafts of a deep geological repository(DGR) can induce damage to the surrounding rock. The excavation damaged zone(EDZ) has higher permeability and reduced strength compared to the undisturbed rock and those factors must be considered in the design and safety assessment of the DGR. The extent and characteristics of the EDZ depend on the size of the opening, the rock type and its properties, and the in situ stresses, among other factors. In addition, the extent and characteristics of the EDZ can change with time due to rock strength degradation, evolution of fractures within the EDZ, and the redistribution of pore pressure around the excavation. In this research project initiated by the CNSC, the authors conducted experimental and theoretical research in order to assess the hydro-mechanical behavior of the Cobourg limestone under undamaged and damaged conditions, both in the short and long terms. The short-term behavior was investigated by a program of triaxial tests with the measurement of permeability evolution on specimens of Cobourg limestone. The authors formulate a coupled hydro-mechanical model to simulate the stress-strain response and evolution of the permeability during those triaxial tests. Using creep and relaxation data from a similar limestone, the model was extended to include its long-term strength degradation. The model successfully simulated both the short-and long-term hydro-mechanical behavior of the limestone during thos展开更多
Rainfall infiltration is one of the most important driving factors of geological hazards, ecological environment problems, and engineering accidents. Understanding the principle of soil wetting during rainfall infiltr...Rainfall infiltration is one of the most important driving factors of geological hazards, ecological environment problems, and engineering accidents. Understanding the principle of soil wetting during rainfall infiltration and its influence on soil mechanical properties is crucial for preventing geological hazards. In this study, micro-penetration tests coupled with moisture monitoring were performed to investigate the infiltration process during wetting through the measured change in mechanical characteristics. Results show that penetration resistance increases in the deep layer gradually. With increasing infiltration time,the wetting front keeps moving downward, and its range becomes wider. A slight increase of the penetration resistance in the shallow layer(d ≤ 17.5 mm) is observed. However, the penetration resistance in the middle layer(22.5 mm ≤ d ≤ 32.5 mm) decreases firstly before a slight increase. In the deep layer(d ≥ 37.5 mm), the penetration resistance decreases continuously during infiltration. Based on the measured water content profile during infiltration, it is found that the evolution of soil mechanical characteristics is fully responsible by the infiltration-induced re-distribution of water content along depth. Generally, the penetration resistance decreases exponentially with increasing water content in the soil. When the water content is low, wetting can weaken soil strength significantly, whereas this effect diminishes when the moisture surpasses a certain threshold. The results highlight that the penetration curves and water content profile show close inter-dependency and consistency, which verifies the feasibility of using micro-penetration to investigate rainfall infiltration and wetting process in surface soil layer or laboratory small-scale soil samples. This method enables fast, versatile and high-resolution measurements of infiltration process and moisture distribution in soil.展开更多
The fluid flow in rock fractures during shear processes has been an important issue in rock mechanics. During shearing, because of the stiffer rock matrix, most deformation occurs in the joints, in the form of normal ...The fluid flow in rock fractures during shear processes has been an important issue in rock mechanics. During shearing, because of the stiffer rock matrix, most deformation occurs in the joints, in the form of normal and shear displacement. Since the joints are rough, deformations will also change the joint aperture and fluid flow. In this article, the hydraulic apertures of the joints of dolomitic limestone foundation of Behesht Abad dam are investigated. Firstly, geological data during a site investigation phase in dam site is gathered, and then related calculations are done and the hydraulic conductivity of the joints is evaluated. The results indicate that the hydraulic conductivity of the joints is reasonable.展开更多
Fine unsaturated soils are used in many applications, particularly in road infrastructure and in construction. These materials undergo deformations according to the stresses to which they are subjected. The purpose of...Fine unsaturated soils are used in many applications, particularly in road infrastructure and in construction. These materials undergo deformations according to the stresses to which they are subjected. The purpose of this paper is to study the influence of hydromechanical stresses on the behavior of low swelling soils compacted at low water content in accordance with the French standard GTR 92 (Guide des Terrassements Routiers). Then, various experimental tests on an oedometer were carried out in the laboratory. Two types of low swelling soil sampled in Nasso on the outskirts of the town of Bobo Dioulasso (Burkina Faso) were used. After shuffling, each sample was moistened to its optimum water content and then compacted to 90% and 95% of its optimum density. Behavior tests show that these soils deform very little when subjected to hydromechanical stresses. However, these deformations are swelling in nature for low mechanical stresses and when the stresses are high, they tend to collapse. When these soils are subjected to a vertical stress of 420 kPa, the primary consolidation time is of the order of one minute for NH<sub>2</sub> (a silty soil) and about ten minutes for NH<sub>3 </sub>(a silty-clayed soil).展开更多
In this article, seepage phenomena through the karstic limestone foundation of Behesht Abad dam are investigated. In order to get a state of seepage and determine the depth of grouting curtain, it has been tried to ev...In this article, seepage phenomena through the karstic limestone foundation of Behesht Abad dam are investigated. In order to get a state of seepage and determine the depth of grouting curtain, it has been tried to evaluate the seepage of Behesht-Abad dam foundation and its abutments by the help of numerical analysis and UDEC 4.0 software. To perform this research, firstly, geological data during a study phase in Behesht Abad dam site was gathered, and then different methods have been used to calculate the engineering properties of rock mass. Therefore the structural model of dam foundation based on the geological data constructed and various boundary conditions including different heads were applied on the model and the suitable depth for the grouting curtain was proposed.展开更多
基金the Canadian Nuclear Safety Commission for funding this project
文摘The Canadian Nuclear Safety Commission(CNSC), Canada’s nuclear regulator, conducts regulatory research in order to develop independent knowledge on safety aspects related to the deep geological disposal of radioactive wastes. In Canada, the Cobourg limestone of the Michigan Basin is currently considered as a potential host formation for geological disposal. The understanding of the hydromechanical behavior of such a host rock is one of the essential requirements for the assessment of its performance as a barrier against radionuclide migration. The excavation of galleries and shafts of a deep geological repository(DGR) can induce damage to the surrounding rock. The excavation damaged zone(EDZ) has higher permeability and reduced strength compared to the undisturbed rock and those factors must be considered in the design and safety assessment of the DGR. The extent and characteristics of the EDZ depend on the size of the opening, the rock type and its properties, and the in situ stresses, among other factors. In addition, the extent and characteristics of the EDZ can change with time due to rock strength degradation, evolution of fractures within the EDZ, and the redistribution of pore pressure around the excavation. In this research project initiated by the CNSC, the authors conducted experimental and theoretical research in order to assess the hydro-mechanical behavior of the Cobourg limestone under undamaged and damaged conditions, both in the short and long terms. The short-term behavior was investigated by a program of triaxial tests with the measurement of permeability evolution on specimens of Cobourg limestone. The authors formulate a coupled hydro-mechanical model to simulate the stress-strain response and evolution of the permeability during those triaxial tests. Using creep and relaxation data from a similar limestone, the model was extended to include its long-term strength degradation. The model successfully simulated both the short-and long-term hydro-mechanical behavior of the limestone during thos
基金supported by the National Key Research and Development Program of China (Grant No. 2020YFC1808101)National Natural Science Foundation of China (Grant No. 41925012)+1 种基金Natural Science Foundation of Jiangsu Province (Grant No.BK20211087)the Fundamental Research Funds for the Central Universities。
文摘Rainfall infiltration is one of the most important driving factors of geological hazards, ecological environment problems, and engineering accidents. Understanding the principle of soil wetting during rainfall infiltration and its influence on soil mechanical properties is crucial for preventing geological hazards. In this study, micro-penetration tests coupled with moisture monitoring were performed to investigate the infiltration process during wetting through the measured change in mechanical characteristics. Results show that penetration resistance increases in the deep layer gradually. With increasing infiltration time,the wetting front keeps moving downward, and its range becomes wider. A slight increase of the penetration resistance in the shallow layer(d ≤ 17.5 mm) is observed. However, the penetration resistance in the middle layer(22.5 mm ≤ d ≤ 32.5 mm) decreases firstly before a slight increase. In the deep layer(d ≥ 37.5 mm), the penetration resistance decreases continuously during infiltration. Based on the measured water content profile during infiltration, it is found that the evolution of soil mechanical characteristics is fully responsible by the infiltration-induced re-distribution of water content along depth. Generally, the penetration resistance decreases exponentially with increasing water content in the soil. When the water content is low, wetting can weaken soil strength significantly, whereas this effect diminishes when the moisture surpasses a certain threshold. The results highlight that the penetration curves and water content profile show close inter-dependency and consistency, which verifies the feasibility of using micro-penetration to investigate rainfall infiltration and wetting process in surface soil layer or laboratory small-scale soil samples. This method enables fast, versatile and high-resolution measurements of infiltration process and moisture distribution in soil.
文摘The fluid flow in rock fractures during shear processes has been an important issue in rock mechanics. During shearing, because of the stiffer rock matrix, most deformation occurs in the joints, in the form of normal and shear displacement. Since the joints are rough, deformations will also change the joint aperture and fluid flow. In this article, the hydraulic apertures of the joints of dolomitic limestone foundation of Behesht Abad dam are investigated. Firstly, geological data during a site investigation phase in dam site is gathered, and then related calculations are done and the hydraulic conductivity of the joints is evaluated. The results indicate that the hydraulic conductivity of the joints is reasonable.
文摘Fine unsaturated soils are used in many applications, particularly in road infrastructure and in construction. These materials undergo deformations according to the stresses to which they are subjected. The purpose of this paper is to study the influence of hydromechanical stresses on the behavior of low swelling soils compacted at low water content in accordance with the French standard GTR 92 (Guide des Terrassements Routiers). Then, various experimental tests on an oedometer were carried out in the laboratory. Two types of low swelling soil sampled in Nasso on the outskirts of the town of Bobo Dioulasso (Burkina Faso) were used. After shuffling, each sample was moistened to its optimum water content and then compacted to 90% and 95% of its optimum density. Behavior tests show that these soils deform very little when subjected to hydromechanical stresses. However, these deformations are swelling in nature for low mechanical stresses and when the stresses are high, they tend to collapse. When these soils are subjected to a vertical stress of 420 kPa, the primary consolidation time is of the order of one minute for NH<sub>2</sub> (a silty soil) and about ten minutes for NH<sub>3 </sub>(a silty-clayed soil).
文摘In this article, seepage phenomena through the karstic limestone foundation of Behesht Abad dam are investigated. In order to get a state of seepage and determine the depth of grouting curtain, it has been tried to evaluate the seepage of Behesht-Abad dam foundation and its abutments by the help of numerical analysis and UDEC 4.0 software. To perform this research, firstly, geological data during a study phase in Behesht Abad dam site was gathered, and then different methods have been used to calculate the engineering properties of rock mass. Therefore the structural model of dam foundation based on the geological data constructed and various boundary conditions including different heads were applied on the model and the suitable depth for the grouting curtain was proposed.