The world’s total fossil fuel consumption has been significantly increasing with consequential increased environmental catastrophes. A hunt for an alternate energy source was stimulated. Biofuel is a plausible option...The world’s total fossil fuel consumption has been significantly increasing with consequential increased environmental catastrophes. A hunt for an alternate energy source was stimulated. Biofuel is a plausible option in this pursuit due to its ideal qualities which included but are not limited to renewability and environmental friendliness. However, the pump price of biodiesel is still very high due mainly to the high cost of the production of the commodity which is influenced by the feedstock and the homogeneous nature of catalyst used. Heterogeneous catalyst was prepared by using Pila globosa sea snail shells prepared by calcination (CP8) and by acid activation (PTW1M). Hydnocapus weightiana seed oil (Non-edible feedstock) was extracted using the soxhlet extraction method and was used for biofuel production with a methanol oil ratio of 3:1. Agitation speed 800, 600 rmp, reaction temperatures of 70°C, 60°C, catalyst concentration (3.00, 2.00 wt%) and reaction time (70 and 60 min) was maintained for CP8 and PTW1M respectively. The rate of the reaction followed a reversible second-order reaction rate. Re-usability accessed. From TGA analysis, the best calcination temperature was 800°C. SEM results showed improved surface morphology after calcination, especially for CP8. FTIR analysis showed the elimination of volatiles and formation of CaO and CaO<sub>4</sub>Te after calcination. The reaction rate constant at different temperatures was 0.0287 at 30°C, 0.1200 at 50°C and 0.1142 at 70°C and activation energy of the ethyl ester was 49.49 KJ/mol. Using CP8. Most of the fuel properties met with ASTM 6751 standard. The result of the re-usability showed that the biodiesel yield declined as follows: 92, 86, 80, 73 and 69 % for CP8 and 85, 84, 81, 76, 65. For PTW1M. After the fifth regeneration cycle, both CP8 and PTW1M samples of Pila globosa sea snail shell catalyst proved effective in transesterification reaction of Hydnocapus weightiana seed oil using ethanol. It was observed that the calcined catalyst (CP8) sh展开更多
文摘The world’s total fossil fuel consumption has been significantly increasing with consequential increased environmental catastrophes. A hunt for an alternate energy source was stimulated. Biofuel is a plausible option in this pursuit due to its ideal qualities which included but are not limited to renewability and environmental friendliness. However, the pump price of biodiesel is still very high due mainly to the high cost of the production of the commodity which is influenced by the feedstock and the homogeneous nature of catalyst used. Heterogeneous catalyst was prepared by using Pila globosa sea snail shells prepared by calcination (CP8) and by acid activation (PTW1M). Hydnocapus weightiana seed oil (Non-edible feedstock) was extracted using the soxhlet extraction method and was used for biofuel production with a methanol oil ratio of 3:1. Agitation speed 800, 600 rmp, reaction temperatures of 70°C, 60°C, catalyst concentration (3.00, 2.00 wt%) and reaction time (70 and 60 min) was maintained for CP8 and PTW1M respectively. The rate of the reaction followed a reversible second-order reaction rate. Re-usability accessed. From TGA analysis, the best calcination temperature was 800°C. SEM results showed improved surface morphology after calcination, especially for CP8. FTIR analysis showed the elimination of volatiles and formation of CaO and CaO<sub>4</sub>Te after calcination. The reaction rate constant at different temperatures was 0.0287 at 30°C, 0.1200 at 50°C and 0.1142 at 70°C and activation energy of the ethyl ester was 49.49 KJ/mol. Using CP8. Most of the fuel properties met with ASTM 6751 standard. The result of the re-usability showed that the biodiesel yield declined as follows: 92, 86, 80, 73 and 69 % for CP8 and 85, 84, 81, 76, 65. For PTW1M. After the fifth regeneration cycle, both CP8 and PTW1M samples of Pila globosa sea snail shell catalyst proved effective in transesterification reaction of Hydnocapus weightiana seed oil using ethanol. It was observed that the calcined catalyst (CP8) sh