Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excit...Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.展开更多
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivati...In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.展开更多
Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of t...Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.展开更多
Utilizing a nanogenerator to scavenge mechanical energy from our living environment is an effective method to solve the power source issue of portable electronics. We report a linear-grating hybridized electromagnetic...Utilizing a nanogenerator to scavenge mechanical energy from our living environment is an effective method to solve the power source issue of portable electronics. We report a linear-grating hybridized electromagnetic-triboelectric nanogenerator for scavenging the mechanical energy generated from sliding motions to sustainably power certain portable electronics. The hybridized nano- generator consists of a slider and a stator in the structural design, and possesses a 66-segment triboelectric nanogenerator (TENG) and a 9-segment electromagnetic generator (EMG) in the functional design. At a sliding acceleration of 20 m/s2 the hybridized nanogenerator can deliver maximum powers of 102.8 mW for the TENG at a loading resistance of 0.4 Mr2 and 103.3 mW for the EMG at a loading resistance of 6 kf2. With an optimal hybridized combination of the TENG with a transformer and the EMG with a power management circuit, a 10 mF capacitor can be easily charged to 2.8 V in 20 s. A packaged hybridized nanogenerator with a light weight of 140 g and small dimensions of 12 cm× 4 cm× 1.6 cm excels in scavenging low-frequency sliding energy to sustainably power portable electronics.展开更多
For human beings of different ages and physical abilities, the inherent balance control system is ubiquitous and active to prevent falling, especially in motion states. A hybridized electromagnetic-triboelectric nanog...For human beings of different ages and physical abilities, the inherent balance control system is ubiquitous and active to prevent falling, especially in motion states. A hybridized electromagnetic-triboelectric nanogenerator (HETNG) is prepared to harvest biomechanical energy during human balance control processes and achieve significant monitoring functions. The HETNG is composed of a symmetrical pendulum structure and a cylinder magnet rolling inside. Four coils are divided into two groups which form into two electromagnetic generators (EMGs). Besides, two spatial electrodes attached to the inner wall constitute a freestanding mode triboelectric nanogenerator (TENG). With a rectification circuit, the HETNG presents a high output power with a peak value of 0.55 W at a load of 160 Ω. Along with human balance control processes during walking, the HETNG can harvest biomechanical energy at different positions on the trunk. Moreover, the HETNG applied in artificial limb has been preliminarily simulated with the positions on thigh and foot, for monitoring the actions of squat and stand up, and lifting the leg up and down. For the elder that walks slowly with a walking aid, the HETNG equipped on the walking aid can help to record the motions of forwarding and unexpected falling, which is useful for calling for help. This work shows the potential of biomechanical energy-driven HETNG for powering portable electronics and monitoring human motions, also shows significant concerns to people lacked action capability or disabled.展开更多
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid...Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.展开更多
The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two ...The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two examples of D-^-A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA-AN-BP and CZP-AN-BP, which possess the same acceptor and n-bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D-n-A structure with proper donor, n-bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the n-bridge, resulting in a hybridized local and charge-transfer (HLCT) excited state with high photoluminescent (PL) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moie- ties with large energy gap between T2 and T1, and a small energy gap between S1 and T2, which favor the reverse intersystem crossing (RISC) from high-lying triplet levels to singlet levels. As a result, the sky-blue emission non-doped OLED based on the TPA-AN-BP reached maximum external quantum efficiency (EQE) of 4.39% and a high exciton utilization efficiency (EUE) of 77%. This study demonstrates a new strategy to construct highly effi- cient OLED materials.展开更多
The occurrence of massif-type anorthosite intrusions is a widespread Proterozoic phenomenon.They are usually associated with gabbroic,charnockitic,and granitic rocks,comprising the so-called anorthositemangerite-charn...The occurrence of massif-type anorthosite intrusions is a widespread Proterozoic phenomenon.They are usually associated with gabbroic,charnockitic,and granitic rocks,comprising the so-called anorthositemangerite-charnockite-granite(AMCG)suite.Although these rocks have been extensively studied worldwide,several aspects concerning their formation remain unsettled.Among them,the magma source and the tectonic setting are the most important.To evaluate these issues,we first compiled geochemical and isotopic data of Proterozoic anorthosite massifs and AMCG suites worldwide and stored it in a database named datAMCG.This plethora of data allows us to make some important interpretations.We argue that the wide-ranging multi-isotopic composition of this group of rocks reflects varying proportions of juvenile mantle-derived melts and crustal components.We interpret that the precursor magmas of most massive anorthosite bodies and associated mafic rocks have a mantle-dominated origin.However,we highlight that a crustal component is indispensable to generate these lithologies.Adding variable amounts of this material during succeeding multi-stage assimilation-fractional crystallization(AFC)processes gives these intrusions their typical mantle-crustal hybrid isotopic traits.In contrast,a crustaldominant origin with a complementary mantle component is interpreted for most MCG rocks.In summary,the isotopic information in datAMCG indicates that both sources are necessary to generate AMCG rocks.Therefore,we suggest that hybridized magmas with different mantle-crust proportions originate these rocks.This interpretation might offer a more nuanced and accurate depiction of this phenomenon in future work instead of choosing a single-sourced model as in the past decades.Finally,tectonomagmatic diagrams suggest that the rocks under study were likely generated in a tectonic environment that transitioned between collision and post-collisional extension,sometimes involving subduction-modified mantle sources.This interpretation is supported by展开更多
The allelic frequency, the polymorphic information contents (PIC), the number of effective alleles, the heterozygosity, and the genetic distances were studied in three imported meat sheep (Suffolk, Dorset, Texel) ...The allelic frequency, the polymorphic information contents (PIC), the number of effective alleles, the heterozygosity, and the genetic distances were studied in three imported meat sheep (Suffolk, Dorset, Texel) and their F1 crossbred obtained from those crossed with indigenous Small Tail Hun Sheep (Suffolk♂× Small Tail Hun Sheep, SH; Dorset ♂× Small Tail Han Sheep♂, DH; Texel♂× Small Tail Hart Sheep ♀, TH) using six microsatellite DNA loci. The perpormences of three-breed crossbred (Suffolk ♂× DH ♀, Suffolk ♂× TH ♀, Texel ♂× SH ♀, Texel ♂× DH ♀, Dorset ♂× TH ♀, and Dorset ♂× SH ♀ ) were tested. The results indicated that there were genetic polymorphisms at six microsatellite loci in six sheep populations. Six microsatellite loci could be used for genetic diversity evaluation in sheep populations. The order of three-breed heterosis by the analysis of genetic relationship from large to small was Texel ♂× DH ♀, Suffolk ♂× DH ♀, Suffolki ♂× TH ♀, Texel ♂× SH ♀, Dorset ♂×TH ♀, and Dorset ♂× SH ♀, which was in accordance with the testing results on actual heterosis. These results showed that prediction of the best three-breed hybridized combination among sheep breeds by microsatellite DNA polymorphism was feasible, which will have an important value on the reasonable utilization of introduced meat sheep and sheep breeding in our country in the future.展开更多
This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the H...This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems.展开更多
We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, ...We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.展开更多
Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Maj...Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection(LAR),cross Andreev reflection(CAR), and cross resonant tunneling(CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices.展开更多
Pursuit of energy-harvesting or-storage materials to realize outstanding electricity output from nature has been regarded as a promising strategy to resolve the energy-lack issue in the future. Among them,the solar ce...Pursuit of energy-harvesting or-storage materials to realize outstanding electricity output from nature has been regarded as a promising strategy to resolve the energy-lack issue in the future. Among them,the solar cell as a solar-to-electrical conversion device has been attracted enormous interest to improve the efficiency. However, the ability to generate electricity is highly dependent on the weather conditions,in other words, there is nearly zero power output in dark-light conditions, such as rainy, cloudy, and night, lowering the monolithic power generation capacity. Here, we present a bifunctional polyaniline film via chemical bath deposition, which can harvest energy from the rain, yielding an induced current of 2.57 μA and voltage of 65.5 μV under the stimulus of real raindrop. When incorporating the functional PANi film into the traditional dye sensitized solar cell as a counter electrode, the hybridized photovoltaic can experimentally realize the enhanced output power via harvesting energy from rainy and sunny days. The current work may show a new path for development of advanced solar cells in the future.展开更多
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading...Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology.展开更多
Nowadays,huge consumption of fossil fuels brings about serious energy crisis and environmental problems,which urge researchers to explore novel sustainable energy sources and storage systems[1,2].
The shell structure design has been recognized as a highly efficient strategy to buffer the severe volume expansion and consecutive pulverization of conversion-type anodes.Nevertheless,construction of a functional she...The shell structure design has been recognized as a highly efficient strategy to buffer the severe volume expansion and consecutive pulverization of conversion-type anodes.Nevertheless,construction of a functional shell with a stabilized structure that meets the demands of both high electronic conductivity and feasible pathways for Na^(+)ions has been a challenge so far.Herein,we design a two-in-one shell configuration for bimetal selenides to achieve fast sodium storage within broadened voltage windows.The hybridized shell,which benefits from the combination of titanium dioxide quantum dots and amorphous carbon,can not only effectively buffer the strain and maintain structural integrity but also allow facile and reversible transport of electrons and Na^(+)uptake for electrode materials during sodiation/desodiation processes,resulting in increased reaction kinetics and diffusion of sodium ions,conferring many benefits to the functionality of conversion-type electrode materials.As a representative material,Ni-CoSe_(2) with such structural engineering shows a reversible capacity of 515 mAh g^(−1)at 0.1 A g^(−1)and a stable capacity of 416 mAh g^(−1)even at 6.4 A g^(−1);more than 80%of the capacity at 0.1 A g^(−1)could be preserved,so that this strategy holds great promise for designing fast-charging conversion-type anodes in the future.展开更多
Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices.Here,we propose a hybridized energy harvester to complement each other's stren...Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices.Here,we propose a hybridized energy harvester to complement each other's strengths for simultaneously scavenging multiple types of energy and then wirelessly transmit the power.The harvester consists of electromagnetic-triboelectric nanogenerator units for collecting rotational energy and a commercial water-proof flexible solar cell.At a rotation rate of 500 rpm,the output current of electromagnetic-triboelectric nanogenerator units can reach about 630 mA through energy management.Moreover,the power harvested by hybridized energy harvester can be wirelessly transmitted up to a distance of about 100 cm in real time to charge mobile phone,anemometer,and hygrometer based on self-resonant coils.The hybridized energy harvester with wireless power transmission has potential applications in large-scale energy collection,long-distance wireless power transmission and sustainably driving mobile electronic devices.展开更多
Hybridized local and charge-transfer(HLCT)excitedstate fluorophores,which enable full exciton utilization through a reverse intersystem crossing fromhigh-lying triplet states to singlet state,have attracted increasing...Hybridized local and charge-transfer(HLCT)excitedstate fluorophores,which enable full exciton utilization through a reverse intersystem crossing fromhigh-lying triplet states to singlet state,have attracted increasing attention toward organic light-emitting diodes(OLEDs)application.Herein,we report three D-π-A-π-D-type isomers o-2CzBT,m-2CzBT,and p-2CzBT by adjusting the donor(D)units from ortho-,meta-,to para-substituted positions with the acceptor(A)core unit,respectively.The HLCT properties of the three compounds are evidently confirmed by theoretical calculations,solvatochromic behaviors,and transient decay lifetimes analyses.As the substituted position changes from the ortho-,meta-,and para-positions,the reduced steric hindrance brings about decreased torsional angle between D and A moieties,resulting in increased oscillator strength.Accordingly,the parasubstituted p-2CzBT is endowed with a more locally excited component that accounts for faster radiative decay,leading to a higher fluorescent efficiency than that of o-2CzBT and m-2CzBT.As expected,p-2CzBT enables its nondoped and doped OLEDs with higher external quantum efficiencies(EQEs)of 12.3% and 15.0%,respectively,which are among the state-ofthe-art efficiencies of HLCT-based OLEDs.Moreover,o-2CzBT and m-2CzBT are also utilized as host materials for high-performance OLEDs,thus extending the application of HLCT materials.展开更多
基金financially supported by the National Science Foundation of China(51073069,51273078)the National Basic Research Program of China(2013CB834801)
文摘Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.
基金supported by National Natural Science Foundation of China(Grant Nos.11271157,11371171 and 11471141)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.
基金supported by the National Natural Science Foundation of China(21334002,51303057,51373054,91233113)the National Basic Research Program of China(2013CB834705,2014CB643504,2015CB655003)+1 种基金the Fundamental Research Funds for the Central Universities(2013ZZ0001)the Introduced Innovative R&D Team of Guangdong(201101C0105067115)
文摘Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.
基金This work was supported by Beijing Natural Science Foundation (No. 2154059), the China Postdoctoral Science Foundation (No. 2015M570988), the National Natural Science Foundation of China (Nos. 51472055 and 61404034), the 2015 Annual Cooperative Project between Chinese Academy of Sdences and Industrial Technology Research Institute (No. CAS-ITRI201501), and the "thousands talents" program for the pioneer researcher and his innovation team, China.
文摘Utilizing a nanogenerator to scavenge mechanical energy from our living environment is an effective method to solve the power source issue of portable electronics. We report a linear-grating hybridized electromagnetic-triboelectric nanogenerator for scavenging the mechanical energy generated from sliding motions to sustainably power certain portable electronics. The hybridized nano- generator consists of a slider and a stator in the structural design, and possesses a 66-segment triboelectric nanogenerator (TENG) and a 9-segment electromagnetic generator (EMG) in the functional design. At a sliding acceleration of 20 m/s2 the hybridized nanogenerator can deliver maximum powers of 102.8 mW for the TENG at a loading resistance of 0.4 Mr2 and 103.3 mW for the EMG at a loading resistance of 6 kf2. With an optimal hybridized combination of the TENG with a transformer and the EMG with a power management circuit, a 10 mF capacitor can be easily charged to 2.8 V in 20 s. A packaged hybridized nanogenerator with a light weight of 140 g and small dimensions of 12 cm× 4 cm× 1.6 cm excels in scavenging low-frequency sliding energy to sustainably power portable electronics.
基金This work was partly supported the National Key Research and Development Program of China(No.2019YFB2004800,Project No.R-2020-S-002)at NUSRI,Suzhou,ChinaSingapore-Poland Joint Grant(R-263-000-C91-305)“Chip-Scale MEMS MicroSpectrometer for Monitoring Harsh Industrial Gases”by Agency for Science,Technology and Research(A*STAR),Singapore and NAWA“Academic International Partnerships of Wroclaw University of Science and Technology”programmed by Polish National Agency for Academic Exchange Programme.
文摘For human beings of different ages and physical abilities, the inherent balance control system is ubiquitous and active to prevent falling, especially in motion states. A hybridized electromagnetic-triboelectric nanogenerator (HETNG) is prepared to harvest biomechanical energy during human balance control processes and achieve significant monitoring functions. The HETNG is composed of a symmetrical pendulum structure and a cylinder magnet rolling inside. Four coils are divided into two groups which form into two electromagnetic generators (EMGs). Besides, two spatial electrodes attached to the inner wall constitute a freestanding mode triboelectric nanogenerator (TENG). With a rectification circuit, the HETNG presents a high output power with a peak value of 0.55 W at a load of 160 Ω. Along with human balance control processes during walking, the HETNG can harvest biomechanical energy at different positions on the trunk. Moreover, the HETNG applied in artificial limb has been preliminarily simulated with the positions on thigh and foot, for monitoring the actions of squat and stand up, and lifting the leg up and down. For the elder that walks slowly with a walking aid, the HETNG equipped on the walking aid can help to record the motions of forwarding and unexpected falling, which is useful for calling for help. This work shows the potential of biomechanical energy-driven HETNG for powering portable electronics and monitoring human motions, also shows significant concerns to people lacked action capability or disabled.
基金supported by the National Key R&D Program of China(grant no.2020YFA0709900)the National Natural Science Foundation of China(grant nos.21971041,22201042,22027805,62134003,and 22104016)+2 种基金the Natural Science Foundation of Fujian Province(grant nos.2020J01447,2022J06008,and 2022J0121)the Research Foundation of Education Bureau of Fujian Province(grant no.JAT210001)the Fuzhou University Testing Fund of Precious Apparatus(grant no.2022T001).
文摘Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.
文摘The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two examples of D-^-A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA-AN-BP and CZP-AN-BP, which possess the same acceptor and n-bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D-n-A structure with proper donor, n-bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the n-bridge, resulting in a hybridized local and charge-transfer (HLCT) excited state with high photoluminescent (PL) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moie- ties with large energy gap between T2 and T1, and a small energy gap between S1 and T2, which favor the reverse intersystem crossing (RISC) from high-lying triplet levels to singlet levels. As a result, the sky-blue emission non-doped OLED based on the TPA-AN-BP reached maximum external quantum efficiency (EQE) of 4.39% and a high exciton utilization efficiency (EUE) of 77%. This study demonstrates a new strategy to construct highly effi- cient OLED materials.
基金LAEP thanks the Consejo Nacional de Humanidades,Ciencias y Tecnologías(CONAHCYT)for granting him a Ph.D.scholarship.Special thanks to Victor Chashchin,Jean-Clair Duchesne,and Mike Hamilton for sharing valuable articles and published data during the development of datAMCG.This paper contributes to the Conacyt Ciencia de Frontera grant 7351 funded to LAS.HLH is funded by the National Natural Science Foundation of China(Grant No.42272227)。
文摘The occurrence of massif-type anorthosite intrusions is a widespread Proterozoic phenomenon.They are usually associated with gabbroic,charnockitic,and granitic rocks,comprising the so-called anorthositemangerite-charnockite-granite(AMCG)suite.Although these rocks have been extensively studied worldwide,several aspects concerning their formation remain unsettled.Among them,the magma source and the tectonic setting are the most important.To evaluate these issues,we first compiled geochemical and isotopic data of Proterozoic anorthosite massifs and AMCG suites worldwide and stored it in a database named datAMCG.This plethora of data allows us to make some important interpretations.We argue that the wide-ranging multi-isotopic composition of this group of rocks reflects varying proportions of juvenile mantle-derived melts and crustal components.We interpret that the precursor magmas of most massive anorthosite bodies and associated mafic rocks have a mantle-dominated origin.However,we highlight that a crustal component is indispensable to generate these lithologies.Adding variable amounts of this material during succeeding multi-stage assimilation-fractional crystallization(AFC)processes gives these intrusions their typical mantle-crustal hybrid isotopic traits.In contrast,a crustaldominant origin with a complementary mantle component is interpreted for most MCG rocks.In summary,the isotopic information in datAMCG indicates that both sources are necessary to generate AMCG rocks.Therefore,we suggest that hybridized magmas with different mantle-crust proportions originate these rocks.This interpretation might offer a more nuanced and accurate depiction of this phenomenon in future work instead of choosing a single-sourced model as in the past decades.Finally,tectonomagmatic diagrams suggest that the rocks under study were likely generated in a tectonic environment that transitioned between collision and post-collisional extension,sometimes involving subduction-modified mantle sources.This interpretation is supported by
基金supported by the Key Project of Ministry of Science and Technology of China(2008BADB2B04-9)the Key Project of Hebei Province,China(07220401D-2)
文摘The allelic frequency, the polymorphic information contents (PIC), the number of effective alleles, the heterozygosity, and the genetic distances were studied in three imported meat sheep (Suffolk, Dorset, Texel) and their F1 crossbred obtained from those crossed with indigenous Small Tail Hun Sheep (Suffolk♂× Small Tail Hun Sheep, SH; Dorset ♂× Small Tail Han Sheep♂, DH; Texel♂× Small Tail Hart Sheep ♀, TH) using six microsatellite DNA loci. The perpormences of three-breed crossbred (Suffolk ♂× DH ♀, Suffolk ♂× TH ♀, Texel ♂× SH ♀, Texel ♂× DH ♀, Dorset ♂× TH ♀, and Dorset ♂× SH ♀ ) were tested. The results indicated that there were genetic polymorphisms at six microsatellite loci in six sheep populations. Six microsatellite loci could be used for genetic diversity evaluation in sheep populations. The order of three-breed heterosis by the analysis of genetic relationship from large to small was Texel ♂× DH ♀, Suffolk ♂× DH ♀, Suffolki ♂× TH ♀, Texel ♂× SH ♀, Dorset ♂×TH ♀, and Dorset ♂× SH ♀, which was in accordance with the testing results on actual heterosis. These results showed that prediction of the best three-breed hybridized combination among sheep breeds by microsatellite DNA polymorphism was feasible, which will have an important value on the reasonable utilization of introduced meat sheep and sheep breeding in our country in the future.
文摘This paper proposes a Hybridized Ant Colony Optimization (HACO) algorithm. It integrates the advantages of Ant System (AS) and Ant Colony System (ACS) of solving optimization problems. The main focus and core of the HACO algorithm are based on annexing the strengths of the AS, ACO and the Max-Min Ant System (MMAS) previously proposed by various researchers at one time or the order. In this paper, the HACO algorithm for solving optimization problems employs new Transition Probability relations with a Jump transition probability relation which indicates the point or path at which the desired optimum value has been met. Also, it brings to play a new pheromone updating rule and introduces the pheromone evaporation residue that calculates the amount of pheromone left after updating which serves as a guide to the successive ant traversing the path and diverse local search approaches. Regarding the computational efficiency of the HACO algorithm, we observe that the HACO algorithm can find very good solutions in a short time, as the algorithm has been tested on a number of combinatorial optimization problems and results shown to compare favourably with analytical results. This strength can be combined with other metaheuristic approaches in the future work to solve complex combinatorial optimization problems.
基金Funded by the National Natural Science Foundation of China (No.50802069)the Natural Science Foundation of Wuhan University of Tech-nology (471-38650378)
文摘We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.
基金supported by the New Century Excellent Talents in University of China(Grant No.NCET-10-0090)the National Natural Science Foundation of China(Grant Nos.11474106,11174088,and 11274124)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT1243)the Natural Science Foundation of Guangdong Province,China(Grant No.S2012010010681)
文摘Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection(LAR),cross Andreev reflection(CAR), and cross resonant tunneling(CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices.
基金financial support from the National Natural Science Foundation of China (61774139, 21503202 and61604143)Shandong Provincial Natural Science Foundation (ZR2015EM024)the Fundamental Research Funds for the Central Universities (201564002, 201762018)
文摘Pursuit of energy-harvesting or-storage materials to realize outstanding electricity output from nature has been regarded as a promising strategy to resolve the energy-lack issue in the future. Among them,the solar cell as a solar-to-electrical conversion device has been attracted enormous interest to improve the efficiency. However, the ability to generate electricity is highly dependent on the weather conditions,in other words, there is nearly zero power output in dark-light conditions, such as rainy, cloudy, and night, lowering the monolithic power generation capacity. Here, we present a bifunctional polyaniline film via chemical bath deposition, which can harvest energy from the rain, yielding an induced current of 2.57 μA and voltage of 65.5 μV under the stimulus of real raindrop. When incorporating the functional PANi film into the traditional dye sensitized solar cell as a counter electrode, the hybridized photovoltaic can experimentally realize the enhanced output power via harvesting energy from rainy and sunny days. The current work may show a new path for development of advanced solar cells in the future.
文摘Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology.
基金supported by the National Natural Science Foundation of China(21601089)Jiangsu Specially Appointed Professor Program。
文摘Nowadays,huge consumption of fossil fuels brings about serious energy crisis and environmental problems,which urge researchers to explore novel sustainable energy sources and storage systems[1,2].
基金Fundamental Research Funds for the Central Universities,Grant/Award Numbers:531118010111,531118010633National Natural Science Foundation of China,Grant/Award Numbers:22109041,52103313。
文摘The shell structure design has been recognized as a highly efficient strategy to buffer the severe volume expansion and consecutive pulverization of conversion-type anodes.Nevertheless,construction of a functional shell with a stabilized structure that meets the demands of both high electronic conductivity and feasible pathways for Na^(+)ions has been a challenge so far.Herein,we design a two-in-one shell configuration for bimetal selenides to achieve fast sodium storage within broadened voltage windows.The hybridized shell,which benefits from the combination of titanium dioxide quantum dots and amorphous carbon,can not only effectively buffer the strain and maintain structural integrity but also allow facile and reversible transport of electrons and Na^(+)uptake for electrode materials during sodiation/desodiation processes,resulting in increased reaction kinetics and diffusion of sodium ions,conferring many benefits to the functionality of conversion-type electrode materials.As a representative material,Ni-CoSe_(2) with such structural engineering shows a reversible capacity of 515 mAh g^(−1)at 0.1 A g^(−1)and a stable capacity of 416 mAh g^(−1)even at 6.4 A g^(−1);more than 80%of the capacity at 0.1 A g^(−1)could be preserved,so that this strategy holds great promise for designing fast-charging conversion-type anodes in the future.
基金the National key R&D project from Minister of Science and Technology,China(Nos.2016YFA0202702 and 2016YFA0202701)the Key Research Program of Frontier Sciences,CAS(ZDBS-LY-DQC025)+1 种基金the National Postdoctoral Program for Innovative Talents(No.BX20180081)China Postdoctoral Science Foundation(No.2019M650604).
文摘Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices.Here,we propose a hybridized energy harvester to complement each other's strengths for simultaneously scavenging multiple types of energy and then wirelessly transmit the power.The harvester consists of electromagnetic-triboelectric nanogenerator units for collecting rotational energy and a commercial water-proof flexible solar cell.At a rotation rate of 500 rpm,the output current of electromagnetic-triboelectric nanogenerator units can reach about 630 mA through energy management.Moreover,the power harvested by hybridized energy harvester can be wirelessly transmitted up to a distance of about 100 cm in real time to charge mobile phone,anemometer,and hygrometer based on self-resonant coils.The hybridized energy harvester with wireless power transmission has potential applications in large-scale energy collection,long-distance wireless power transmission and sustainably driving mobile electronic devices.
基金financially supported by the National Natural Science Foundation of China(NSFC:nos.51733010,51973239,and 52073316)the Guangdong Science and Technology Plan(nos.2015B090913003 and 2015B090915003).
文摘Hybridized local and charge-transfer(HLCT)excitedstate fluorophores,which enable full exciton utilization through a reverse intersystem crossing fromhigh-lying triplet states to singlet state,have attracted increasing attention toward organic light-emitting diodes(OLEDs)application.Herein,we report three D-π-A-π-D-type isomers o-2CzBT,m-2CzBT,and p-2CzBT by adjusting the donor(D)units from ortho-,meta-,to para-substituted positions with the acceptor(A)core unit,respectively.The HLCT properties of the three compounds are evidently confirmed by theoretical calculations,solvatochromic behaviors,and transient decay lifetimes analyses.As the substituted position changes from the ortho-,meta-,and para-positions,the reduced steric hindrance brings about decreased torsional angle between D and A moieties,resulting in increased oscillator strength.Accordingly,the parasubstituted p-2CzBT is endowed with a more locally excited component that accounts for faster radiative decay,leading to a higher fluorescent efficiency than that of o-2CzBT and m-2CzBT.As expected,p-2CzBT enables its nondoped and doped OLEDs with higher external quantum efficiencies(EQEs)of 12.3% and 15.0%,respectively,which are among the state-ofthe-art efficiencies of HLCT-based OLEDs.Moreover,o-2CzBT and m-2CzBT are also utilized as host materials for high-performance OLEDs,thus extending the application of HLCT materials.