Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and op...Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and optimized at different parameters like sliding speed, applied load, sliding time, and percentage of reinforcement by Taguchi method. The specimens were examined by Rockwell hardness test machine, Pin on Disc, Scanning Electron Microscope (SEM) and Optical Microscope. A plan of experiment generated through Taguchi’s technique is used to conduct experiments based on L27 orthogonal array. The developed ANOVA and the regression equations were used to find the optimum wear as well as co-efficient of friction under the influence of sliding speed, applied load, sliding time and percentage of reinforcement. The dry sliding wear resistance was analyzed on the basis of “smaller the best”. Finally, confirmation tests were carried out to verify the experimental results.展开更多
<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as r...<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us展开更多
文摘Al-7075 alloy-base matrix, reinforced with mixtures of silicon carbide (SiC) and boron carbide (B4C) particles, know as hybrid composites have been fabricated by stir casting technique (liquid metallurgy route) and optimized at different parameters like sliding speed, applied load, sliding time, and percentage of reinforcement by Taguchi method. The specimens were examined by Rockwell hardness test machine, Pin on Disc, Scanning Electron Microscope (SEM) and Optical Microscope. A plan of experiment generated through Taguchi’s technique is used to conduct experiments based on L27 orthogonal array. The developed ANOVA and the regression equations were used to find the optimum wear as well as co-efficient of friction under the influence of sliding speed, applied load, sliding time and percentage of reinforcement. The dry sliding wear resistance was analyzed on the basis of “smaller the best”. Finally, confirmation tests were carried out to verify the experimental results.
文摘<span style="font-family:Verdana;">A metal matrix composite constitutes a continuous metallic matrix and a </span><span style="font-family:Verdana;">discontinuous phase known as reinforcement. The hybrid metal matrix composites</span><span style="font-family:Verdana;"> (Hmmcs) have been used to manufacture drive shafts, disc brake rotors, brake drums, connecting rods pistons, engine block cylinder liners for automotive and rail vehicle applications. The Hmmcs castings of diameter 120 mm and length 300 mm were prepared through sand mould technique following stir casting methodology. The cast components further subjected to evaluation of physical properties and machining tests using two grades of coated inserts and PCD inserts. The experiments were carried out following ISO 3685 standards. The coating thickness of the TiN coated and TiAlN coated inserts were measured using Kalo testing method</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the results of the test show that the interface of the substrate and coating was free from the porosity, and the coating thickness of TiN coating was 4.84 microns and TiAlN coating was measured 4.6 microns. The results of the experiments show that performance of the PCD insert was better than coated inserts at 0.1 mm/rev feed</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">;</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> however at 0.2 mm/revolution feed PCD insert failed by micro chipping of cutting edge while machining Hmmcs. When TiAlN coated inserts were us