The capability of human pluripotent stem cell(hPSC)lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research an...The capability of human pluripotent stem cell(hPSC)lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine.However,variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost.To screen the qualified cell lines and exclude problematic cell lines,their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by highthroughput gene expression profiling assay.Additionally,their differentiation potential,particularly the lineage-specific differentiation propensities of hPSC lines,should be predicted in an early stage.As a complement to the teratoma assay,RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo.Moreover,multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation.For clinical application of hPSCs,the malignant potential of the cells must also be evaluated.A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas,malignancy marker expression,and other parameters.Although various prediction methods are available,distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost,restricting their wide applications in routine studies.Therefore,simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.展开更多
Human pluripotent stem cells(hPSCs)are important resources for cell-based therapies and pharmaceutical applications.In order to realize the potential of hPSCs,it is critical to develop suitable technologies required f...Human pluripotent stem cells(hPSCs)are important resources for cell-based therapies and pharmaceutical applications.In order to realize the potential of hPSCs,it is critical to develop suitable technologies required for specific applications.Most hPSC technologies depend on cell culture,and are critically influenced by culture medium composition,extracellular matrices,handling methods,and culture platforms.This review summarizes the major technological advances in hPSC culture,and highlights the opportunities and challenges in future therapeutic applications.展开更多
Establishing an effective three-dimensional(3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a pol...Establishing an effective three-dimensional(3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane(PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture system,we further developed an in vitro disease-like model of traumatic brain injury(TBI), which showed a robust increase of glutamate-release from the neurons, in response to mechanical impacts, recapitulating the critical pathology of TBI. The increased glutamate-release from our 3D culture model was attenuated by the treatment of neural protective drugs, memantine or nimodipine. The established 3D in vitro human neural culture system and TBI-like model may be used to facilitate mechanistic studies and drug screening for neurotrauma or other neurological diseases.展开更多
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. Wi...Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genomewide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.展开更多
Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro st...Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells(h PSCs), either of embryonic origin or through reprogramming of adult somatic cells,represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of h PSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.展开更多
Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Pre...Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Precise genetic manipulation is crucial to all these applications, and many recent advances have been made in site specific nuclease systems like zinc finger nucleases, TALENs, and CRISPR/Cas. In this review, we address the importance of site-specific genome modification and how this technology can be applied to manipulate human pluripotent stem cells.展开更多
基金Supported by National Natural Science Foundation of China,No.81770621Ministry of Education,Culture,Sports,Science,and Technology of Japan,KAKENHI,No.16K15604 and No.18H02866Natural Science Foundation of Jiangsu Province,No.BK20180281
文摘The capability of human pluripotent stem cell(hPSC)lines to propagate indefinitely and differentiate into derivatives of three embryonic germ layers makes these cells be powerful tools for basic scientific research and promising agents for translational medicine.However,variations in differentiation tendency and efficiency as well as pluripotency maintenance necessitate the selection of hPSC lines for the intended applications to save time and cost.To screen the qualified cell lines and exclude problematic cell lines,their pluripotency must be confirmed initially by traditional methods such as teratoma formation or by highthroughput gene expression profiling assay.Additionally,their differentiation potential,particularly the lineage-specific differentiation propensities of hPSC lines,should be predicted in an early stage.As a complement to the teratoma assay,RNA sequencing data provide a quantitative estimate of the differentiation ability of hPSCs in vivo.Moreover,multiple scorecards have been developed based on selected gene sets for predicting the differentiation potential into three germ layers or the desired cell type many days before terminal differentiation.For clinical application of hPSCs,the malignant potential of the cells must also be evaluated.A combination of histologic examination of teratoma with quantitation of gene expression data derived from teratoma tissue provides safety-related predictive information by detecting immature teratomas,malignancy marker expression,and other parameters.Although various prediction methods are available,distinct limitations remain such as the discordance of results between different assays and requirement of a long time and high labor and cost,restricting their wide applications in routine studies.Therefore,simpler and more rapid detection assays with high specificity and sensitivity that can be used to monitor the status of hPSCs at any time and fewer targeted markers that are more specific for a given desired cell type are urgently needed.
基金Supported by University of Macao Multi-Year Research Grants,No.MYRG2015-00228-FHS and MYRG2018-00135-FHSMacao Science and Technology Development Fund,No.FDCT/131/2014/A3 and FDCT/056/2015/A2
文摘Human pluripotent stem cells(hPSCs)are important resources for cell-based therapies and pharmaceutical applications.In order to realize the potential of hPSCs,it is critical to develop suitable technologies required for specific applications.Most hPSC technologies depend on cell culture,and are critically influenced by culture medium composition,extracellular matrices,handling methods,and culture platforms.This review summarizes the major technological advances in hPSC culture,and highlights the opportunities and challenges in future therapeutic applications.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA16010306)the National Natural Science Foundation of China Grants (91849117 and 81471301)+3 种基金Key Research and Development Program of China (2016YFC1306703)The National Jiangsu Outstanding Young Investigator Program (BK20160044, China)Jiangsu Province’s Innovation Person (China)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China Project (Grant No. 17KJB180010)
文摘Establishing an effective three-dimensional(3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane(PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture system,we further developed an in vitro disease-like model of traumatic brain injury(TBI), which showed a robust increase of glutamate-release from the neurons, in response to mechanical impacts, recapitulating the critical pathology of TBI. The increased glutamate-release from our 3D culture model was attenuated by the treatment of neural protective drugs, memantine or nimodipine. The established 3D in vitro human neural culture system and TBI-like model may be used to facilitate mechanistic studies and drug screening for neurotrauma or other neurological diseases.
基金Supported by National Key RD Program of China,No.017YFA0102800,and No.2017YFA0103700the National Natural Science Foundation of China,No.31670829
文摘Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genomewide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.
文摘Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells(h PSCs), either of embryonic origin or through reprogramming of adult somatic cells,represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of h PSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.
文摘Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Precise genetic manipulation is crucial to all these applications, and many recent advances have been made in site specific nuclease systems like zinc finger nucleases, TALENs, and CRISPR/Cas. In this review, we address the importance of site-specific genome modification and how this technology can be applied to manipulate human pluripotent stem cells.