Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limi...Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a - 60 nL RT- LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.展开更多
This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator contro...This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory.Moreover,the leader’s input is nonzero and not available to all followers.By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults,respectively,the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed.It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally,simulation results are presented for verifying the effectiveness of the proposed control method.展开更多
From every heartbeat to every footstep, human beings dissipate energy all the time. Researchers are trying to harvest energy from the human body and convert it into electricity, which can be supplied to electronic med...From every heartbeat to every footstep, human beings dissipate energy all the time. Researchers are trying to harvest energy from the human body and convert it into electricity, which can be supplied to electronic medical devices closely related to human health. Such an energy recycling form is currently a research hotspot in the fields of energy harvesting and bioelectronics. This review firstly summarizes the distribution and characteristics of three primary energy sources contained in the human body, including thermal energy, chemical energy, and mechanical energy. Afterwards, the applicable energy harvesting technologies and corresponding working mechanisms for different energy sources are introduced. Some typical demos and practical applications of each type of human body energy harvesting technology are also presented. Specifically, the advantages and critical issues of different energy harvesting technologies are summarized, and corresponding promising solutions are also provided. Besides, the interaction strategies between various energy harvesting devices and the human body are summarized from the aspects of wearable and implantable applications. Finally, the concept of a self-powered closed-loop bioelectronic system (SCBS) is put forward for the first time, which organically combines portable electronic devices, implantable electronic medical devices, energy harvesting devices, and the human body. The prospect of symbiosis between the SCBS and the human body is provided. The demands and future development trends of the SCBS are also discussed.展开更多
Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the sys...Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the system robustness and security are notably enhanced.Hence,a distributed fixed-time tracking control problem is investigated in this paper for heterogeneous MASs based on the HiTL idea.First,a lemma of practically fixed-time stable is given where an explicit relationship of settling time and convergence domain is clearly shown.Then,under the framework of the adaptive backstepping approach,a series of modified intermediate control signals is designed to avoid the singularity problem by taking advantage of power transformation,fuzzy logic systems,and inequality schemes.Finally,the numerical example and comparison results are utilized to testify the effectiveness of the proposed method.展开更多
基金supported by funding from the National Institutes of Health (NIH) Exploratory/Developmental Grant (R21) (AI106024)supported by a Ruth L.Kirschstein National Research Service Award for Individual Pred octoral MD/PhD and Other Dual Doctoral Degree Fellows (F30) (AI109825)
文摘Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a - 60 nL RT- LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.
基金This work was partially supported by the National Natural Science Foundation of China(62033003,62003098)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)the China Postdoctoral Science Foundation(2019M662813,2020T130124).
文摘This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory.Moreover,the leader’s input is nonzero and not available to all followers.By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults,respectively,the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed.It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally,simulation results are presented for verifying the effectiveness of the proposed control method.
基金This work was supported by the National Natural Science Foundation of China (61875015,81802194)Beijing Natural Science Foundation (JQ20038)+2 种基金Natural Science Foundation of Jiangsu Province BK20170357,ScienceTechnology Planning Project of Guangdong Province (2018B030331001)the National Youth Talent Support Program.
文摘From every heartbeat to every footstep, human beings dissipate energy all the time. Researchers are trying to harvest energy from the human body and convert it into electricity, which can be supplied to electronic medical devices closely related to human health. Such an energy recycling form is currently a research hotspot in the fields of energy harvesting and bioelectronics. This review firstly summarizes the distribution and characteristics of three primary energy sources contained in the human body, including thermal energy, chemical energy, and mechanical energy. Afterwards, the applicable energy harvesting technologies and corresponding working mechanisms for different energy sources are introduced. Some typical demos and practical applications of each type of human body energy harvesting technology are also presented. Specifically, the advantages and critical issues of different energy harvesting technologies are summarized, and corresponding promising solutions are also provided. Besides, the interaction strategies between various energy harvesting devices and the human body are summarized from the aspects of wearable and implantable applications. Finally, the concept of a self-powered closed-loop bioelectronic system (SCBS) is put forward for the first time, which organically combines portable electronic devices, implantable electronic medical devices, energy harvesting devices, and the human body. The prospect of symbiosis between the SCBS and the human body is provided. The demands and future development trends of the SCBS are also discussed.
基金the National Natural Science Foundation of China(Grant Nos.62373208,62003097,62033003,61873139,62103214 and 62203245)the Talent Introduction and Cultivation Plan for Youth Innovation of Universities in Shandong Province。
文摘Human-in-the-loop(HiTL)control is promising for the cooperative control problem of multi-agent systems(MASs)under the complicated environment.By considering the effect of human intelligence and decision making,the system robustness and security are notably enhanced.Hence,a distributed fixed-time tracking control problem is investigated in this paper for heterogeneous MASs based on the HiTL idea.First,a lemma of practically fixed-time stable is given where an explicit relationship of settling time and convergence domain is clearly shown.Then,under the framework of the adaptive backstepping approach,a series of modified intermediate control signals is designed to avoid the singularity problem by taking advantage of power transformation,fuzzy logic systems,and inequality schemes.Finally,the numerical example and comparison results are utilized to testify the effectiveness of the proposed method.