It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnit...It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnitude Hubble diagram in the redshift range z = 0.0104 - 1 seems to confirm this expectation, and it is believed that this conformity is also valid in the high redshift range. However, this belief is not undisputed. Recent work in the high redshift range of up to z = 8.1 has shown that the shape of the Hubble diagram deviates considerably from the predictions made by the Lambda cold dark matter model. These analyses, however, were based on mixed SN1a and gamma ray burst data, and some astronomers argue that this may have biased the results. In this paper, 109 cosmology-independent, calibrated gamma ray burst z/μdata points are used to calculate the Hubble diagram in the range z = 0.034 to z = 8.1. The outcome of this analysis confirms prior results: contrary to expectations, the shape of the Hubble diagram turns out to be exponential, and this is difficult to explain within the framework of the standard model. The cosmological implications of this unexpected result are discussed.展开更多
The Hubble equation was considered valid enough to calculate the recession velocity of galaxies, until further observations showed that there would be an accelerated recession in the Hubble flow, necessarily tied to a...The Hubble equation was considered valid enough to calculate the recession velocity of galaxies, until further observations showed that there would be an accelerated recession in the Hubble flow, necessarily tied to an accelerated expansion of the Universe. So, this paper postulates the existence of a Hubble field as a possible cause for such an accelerated expansion, with some conditions: it must be a scalar field whose intensity should be a constant in respect to distance and whose Poisson equation should not be zero nor a function of mass;such field could rather be a property of the space-time. The obvious expression for acceleration should be the derivative of the Hubble equation respect to time, which gives two opposed-signs terms whose substitution by the De-Sitter equation drives to a permanent negative acceleration, similarly to that obtained by the 2<sup>nd</sup> Friedmann equation. Otherwise, the inclusion of the ? term in the gravitational Einstein equation has led to a two opposed-signs terms expression, resembled to a non-published Newton equation. The negative term expresses the gravitational attraction and the positive one expresses the accelerated expansion as a ? function, which usually is attributed to dark energy. In this paper it is shown that Λ is proportional to the squared Hubble parameter and that the uncertain dark energy may be substituted by the calculable Hubble field intensity to obtain an equation for the net Universe acceleration. Equations for the Hubble parameter as functions of time and radius are also deduced. A relation is shown between the various assumed masses of the Universe and its critical radius. Additional Universe parameters are estimated such as the deceleration factor and a solution for the Poisson equation in the Hubble field. A brief comment t on high-standard candles is included.展开更多
In a recent article [1] the author of this Part II proposed the parameter ΓH for the acceleration expansion of the Universe, instead of dark energy, defining such parameter as ΓH=H2⋅r(M/S2) = a constant. A ...In a recent article [1] the author of this Part II proposed the parameter ΓH for the acceleration expansion of the Universe, instead of dark energy, defining such parameter as ΓH=H2⋅r(M/S2) = a constant. A question about the expansive and constant acceleration of the internal levels of the Universe could be solved by equation ((3.10) ref. [1]) of the same article: Any assumed internal distance, lower than r of (ref. [2]) implies a proportional change in the squared Hubble parameter, so maintaining the constancy of the ΓH value for every stratum of the Universe. In the present work it is proved the constancy of the Hubble force by means of its generalized coordinates. As well, an equation to relate the Lagrange and the Hamilton functions is obtained for the Hubble field. Two concepts for both Hubble’s energy and tensor are also proposed. Finally, prior misprints of Part I, ref. [1], are corrected in the Appendix.展开更多
The theory that gravitons lose energy thru gravitational redshift while traveling in a gravitational field is applied to the universe. It is proposed that a co-moving volume element is required for the luminosity dist...The theory that gravitons lose energy thru gravitational redshift while traveling in a gravitational field is applied to the universe. It is proposed that a co-moving volume element is required for the luminosity distance relation because the gravitational field acts simultaneously in three dimensions rather than just along a geodesic curve. With only a relatively small baryonic mass density the curve fit of the novel luminosity distance relation to Type Ia supernovae distance data is of the same quality as for the standard Lambda Cold Dark Matter model.展开更多
The Doppler formula should be used directly to calculate red shift of Cosmology. The first is gravity, the second is the Doppler’s effect and the third is the Compton scattering. The red shift of cosmology is conside...The Doppler formula should be used directly to calculate red shift of Cosmology. The first is gravity, the second is the Doppler’s effect and the third is the Compton scattering. The red shift of cosmology is considered to be caused by the receding motions of celestial bodies, of which essence is the Doppler’s effect. However, the basic formula used to calculate the relationship between red shift and distance for Ia supernova in cosmology is z+1= R(t0)/R(t1)which is based on the R-W metric and related to the scalar factor R(t). This is different from the Doppler formula which is related to speed factor R(t). Because the R-W metric is only a mathematical structure of space, the metric red shift is not an independent law of physics, this inconsistence is not allowed in physics. It is proved strictly in this paper that the formula of metric red shift is only the result of the first order approximation. If higher order approximations are considered, we can obtain a restrict condition R(t). It indicates that if the formula of metric red shift holds, it can only be suitable to describe the spatial uniform expansion, unsuitable for the practical universal process with acceleration. The further study reveals that the R-W metric violates the invariability principle of light’s speed in vacuum. The time delay caused by展开更多
Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between...Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between quarks in protons in cold hydrogen gas in outskirts of the universe. The mechanisms for such creation of dark matter and PRE are reviewed and updated in greater detail and clearer manner. The so-generated dark matter in a galaxy can account for the galaxy’s rotation curve. Star formation in this galaxy uses up the hydrogen atoms and thereby reduces its dark matter content. Dark matter created in intergalactic hydrogen gas can form filaments. In a hypothetical model of the universe, a hydrogen atom with a small amount of negative relative energy or dark matter at the outskirts of this universe can via collisions with other atoms turn into one with a small positive relative energy PRE. Once such a sign change takes place, gravitational attraction switches to anti-gravity repulsion unopposed by any pressure gradient. This leads to a “run away” hydrogen atom moving away from the mass center of the universe and provides a basic mechanism for the accelerating expansion of the universe. This theoretical expansion and the measured redshift data are both compatible with the conception of an acceleratingly expanding universe and complement each other. But they cannot verify each other directly because the present model has been constructed for purposes different from those of the measurements. But it can be shown that both approaches do support each other qualitatively under certain circumstances for small velocities. Dark matter and PRE in the present model are not foreign objects like WIMPs and dark energy-cosmological constant but can only be created in cold hydrogen gas in gravitational field. To achieve this, infrequent collisions among the hydrogen atoms must take place. Dark matter was created first and can eventually later evolve into PRE in the outskirts of the universe and in the intergalactic展开更多
We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift id...We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.展开更多
Aims: The paper explores the hypothesis that the speed of light c is decreasing over time at rate (dc/dt)=-H? c, H being the Hubble constant. This hypothesis differs from the so-called tired light, in which the veloci...Aims: The paper explores the hypothesis that the speed of light c is decreasing over time at rate (dc/dt)=-H? c, H being the Hubble constant. This hypothesis differs from the so-called tired light, in which the velocity c is supposed to vary during the journey of photons in the empty space for some frictional mechanism. In the hypothesis of the author the speed c, during this journey, is assumed constant. In this way the problems of the tired hypothesis are overcome. Methods: The paper links the variation dc/dt with the Hubble constant and infers a value of dc/dt from the difference between the value of the variation of the Earth-Moon distance measured by the Lunar Laser Ranging Experiment and the tidal effect. Results: Under the hypothesis c time varying, we explain: 1) The cosmological redshift. 2) The anomalous acceleration ap ≈ -8 × 10-10 m?sec-2, measured for some spacecrafts. 3) The high redshift of supernovae Ia, which seems to evidence an acceleration of the expansion of the universe. 4) The peripheral motion of stars in galaxies around their rotational centre. 5) The dilation of the light curves observed for supernovae Ia.展开更多
Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a...Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a(t) through the ΛCDM model. We have proposed a new theory to explain Hubble law. The theory has been validated against observation data. It proposes a new approach of time which introduces the cosmic time tc. Cosmic time is an absolute reference to universe. It is zero at the edge with tc = 0, tc = T at the observer position and tc = s for any source between the edge and the observer, with T > s > 0. This theory acts like the relativity of space-time. The redshift is interpreted as a perspective parameter p(tc) = tc/T. Using gravitation, it is the Einstein effect applied to the uni-verse. This paper comments and interprets further consequences of this new theory. We emphasize the difference between duration (as usually used in classical cosmologic metrics) and the cosmic time tc as a notion of date. It induces two related effects: relativity of speed of light and time stretching. We explain why the cosmological standard model is not well suited to describe the Hubble law, to describe the universe. We also explain why gravitation and temperature increase when going from the center to the edge of the universe, when going from present to birth. The model has no use of black energy. As a consequence, the universe is seen as a black hole created by the cosmic time shock wave when tc = 0.展开更多
We propose a new interpretation of Hubble law. Waves are observed in the observer space-time. It defines the observer proper time T. Space-time is composed of three spatial dimensions and three temporal parameters: pr...We propose a new interpretation of Hubble law. Waves are observed in the observer space-time. It defines the observer proper time T. Space-time is composed of three spatial dimensions and three temporal parameters: proper-time s of the observed object, proper time T of the observer and integration time t (currently considered as relative time). Time origin is the birth of the universe. So, universe is stable;it can be seen as the comobile space of expansion theory. When changing space-time from the source to the observer, waves are seen cooling;this explains the redshift effect. The distance is defined as the product of the delay time with the local speed of light of the observer. The mistake between t and T can explain why universe is viewed as not only in expansion but also in acceleration whereas we think it is stable.展开更多
In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to...In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.展开更多
We deduced the Hubble law and the age of the Universe, through the introduction of the Inverse Yukawa Field (IYF), as a non-local additive complement of the Newtonian gravitation (Modified Newtonian Dynamics). As a re...We deduced the Hubble law and the age of the Universe, through the introduction of the Inverse Yukawa Field (IYF), as a non-local additive complement of the Newtonian gravitation (Modified Newtonian Dynamics). As a result, we connected the dynamics of astronomical objects at great scale with the Friedmann-Robertson-Walker ΛFRW) model. From the corresponding formalism, the Hubble law can be expressed as v?= (4π[G]/c)r, which was derived by evaluating the IYF force at distances much greater than 50 Mpc, giving a maximum value for the expansion rate of the universe of H0(max)?≈ 86.31 km·s-1Mpc-1, consistent with the observational data of 392 astronomical objects from NASA/IPAC Extragalactic Database (NED). This additional field (IYF) provides a simple interpretation of dark energy as the action of baryonic matter at large scales. Additionally, we calculated the age of the universe as 11 Gyr, in agreement with recent measurements of the age of the white dwarfs in the solar neighborhood.展开更多
The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and gal...The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and galaxies, from this same redshift <em>z</em>. After having exposed critiques on the demonstration and the relativistic use which require the assumption of an expanding universe by itself, it is proposed within the framework of neo-Newtonian mechanics the formula <img src="Edit_5abcd41b-f0f0-4fdd-8d05-07b43d1fa78c.png" alt="" /> where <em>V</em> is the speed from the source. This formula has the double characteristic of being equivalent to relativistic predictions for low redshifts, but of deviating from them by up to 17% for high redshifts. It is consistent with the observation of the anisotropy of the Universe and the Cosmic Microwave Background. It helps to explain Pioneer anomalies. It is compatible with the constancy in the majority of cases of interference phenomena. Finally, it provides a new analysis grid for the observation of supernovae, galaxies and distant pulsars, thus opening up new fields of research on the increase in distances attributed to dark energy and also in other areas of the cosmology.展开更多
Current progress in cosmic microwave background (CMB) anisotropy measurements opens up the possibility of determining Hubble’s constant (H0 = h × 100 km s−1 Mpc−1) from the CMB power spectrum...Current progress in cosmic microwave background (CMB) anisotropy measurements opens up the possibility of determining Hubble’s constant (H0 = h × 100 km s−1 Mpc−1) from the CMB power spectrum radiation temperature anisotropy. The results show that, besides the Lambda cold dark matter (ΛCDM) model, much simpler Einstein-de Sitter (EdeS) models without the cosmological constant can fit the data as well, or even better, than the ΛCDM model. Calculations with EdeS models yield unexpectedly low values for Hubble’s constant of h = 0.30 and 0.46, respectively. These values are completely inconsistent with the direct determination of h ~ 0.70 from the redshift (RS) of spectral lines. In the present paper I consider whether the gap between h = 0.3 and h = 0.7 could be explained using conventional physics without introducing further hypotheses, or whether the RS of starlight and the RS of the CMB could stem from different physical origins.展开更多
Although dark energy and dark matter have not yet been detected, they are believed to comprise the majority of the universe. Observations of the flat rotation curve of galaxies may be explained by dark matter and dark...Although dark energy and dark matter have not yet been detected, they are believed to comprise the majority of the universe. Observations of the flat rotation curve of galaxies may be explained by dark matter and dark energy. This article, using Newton’s laws and Einstein’s theory of gravitation, shows that it is possible to define a new term, called E0, variable in time and space, of which one of its limits is the Hubble constant H0. I show that E0?is strongly linked to an explanation of the flat rotation curve of galaxies. This strong correlation between Hubble’s constant H0?and E0 enables us to solve the mystery of the surplus of gravity that is stabilizing the universe.展开更多
The evolution of the universe from an initial dramatic event, the Big-Bang, is firmly established. Hubble’s law [1] (HL) connects the velocity of galactic objects and their relative distance: v(r) = Hr, where H is th...The evolution of the universe from an initial dramatic event, the Big-Bang, is firmly established. Hubble’s law [1] (HL) connects the velocity of galactic objects and their relative distance: v(r) = Hr, where H is the Hubble constant. In this work we suggest that HL is not valid at large distances because of total energy conservation. We propose an expansion of the velocity in terms of their relative distance and produce a better fit to the available experimental data. Using a simple “dust” universe model, we can easily calculate under which conditions an (unstable) equilibrium state can be reached and we estimate the values of the matter present in the universe as well as the “dark energy”. Within the same formalism we can derive the “deceleration parameter”. We do not need to invoke any “dark energy”, its role being played by the kinetic correction. The resulting picture is that the universe might reach an unstable equilibrium state whose fate will be decided by fluctuations: either collapse or expand forever.展开更多
There are three main mechanisms to cause the red shift of spectrum in physics. The first is gravity which is related to mass. The second is the Compton scattering which is related to the energy transformation of photo...There are three main mechanisms to cause the red shift of spectrum in physics. The first is gravity which is related to mass. The second is the Compton scattering which is related to the energy transformation of photon. The third is the Doppler’s effect which is related to velocity. The basic formula used to calculate the relation of red shift and distance of Ia supernova in cosmology is which is related to the scalar factor of the R-W metric. It is completely different from the Doppler formula of red shift which is related to velocity factor . This kind of inconsistency is not allowed in physics. Because of , when became larger and larger with time increase, z became smaller and smaller, means that space expansion leads to red shift becoming smaller. At present time, we have and , means that there is no red shift for the light emitted from distance celestial bodies at present. The results obviously violate the Hubble law! It is proved strictly in mathematics that the formula is untenable unless constant and . The further study reveals that the essential reason of the mistake is that the R-W metric violates the principle of light’s speed invariable. The time delay caused by relativity velocity between light’s source and observer is neglected. Besides, there exists the problem of time misalignment between theoretical calculation and practical observations in the original documents of Ia supernova projects. So the formula used to calculate the relation between red shift and distance of Ia supernova is wrong and the deduced conclusion about dark energy and the accelerating expansion of the universe are incredible. It is proved in this paper that based on the Doppler’s formula and the method of numerical calculation, the relation of red shift and distance of Ia supernova can be explained well. The hypotheses of dark energy and the accelerating expansion of the universe are completely unnecessary in cosmology.展开更多
文摘It is generally accepted that the history of the expansion of the universe can be exactly described by the concordance model, which makes specific predictions about the shape of the Hubble diagram. The redshift-magnitude Hubble diagram in the redshift range z = 0.0104 - 1 seems to confirm this expectation, and it is believed that this conformity is also valid in the high redshift range. However, this belief is not undisputed. Recent work in the high redshift range of up to z = 8.1 has shown that the shape of the Hubble diagram deviates considerably from the predictions made by the Lambda cold dark matter model. These analyses, however, were based on mixed SN1a and gamma ray burst data, and some astronomers argue that this may have biased the results. In this paper, 109 cosmology-independent, calibrated gamma ray burst z/μdata points are used to calculate the Hubble diagram in the range z = 0.034 to z = 8.1. The outcome of this analysis confirms prior results: contrary to expectations, the shape of the Hubble diagram turns out to be exponential, and this is difficult to explain within the framework of the standard model. The cosmological implications of this unexpected result are discussed.
文摘The Hubble equation was considered valid enough to calculate the recession velocity of galaxies, until further observations showed that there would be an accelerated recession in the Hubble flow, necessarily tied to an accelerated expansion of the Universe. So, this paper postulates the existence of a Hubble field as a possible cause for such an accelerated expansion, with some conditions: it must be a scalar field whose intensity should be a constant in respect to distance and whose Poisson equation should not be zero nor a function of mass;such field could rather be a property of the space-time. The obvious expression for acceleration should be the derivative of the Hubble equation respect to time, which gives two opposed-signs terms whose substitution by the De-Sitter equation drives to a permanent negative acceleration, similarly to that obtained by the 2<sup>nd</sup> Friedmann equation. Otherwise, the inclusion of the ? term in the gravitational Einstein equation has led to a two opposed-signs terms expression, resembled to a non-published Newton equation. The negative term expresses the gravitational attraction and the positive one expresses the accelerated expansion as a ? function, which usually is attributed to dark energy. In this paper it is shown that Λ is proportional to the squared Hubble parameter and that the uncertain dark energy may be substituted by the calculable Hubble field intensity to obtain an equation for the net Universe acceleration. Equations for the Hubble parameter as functions of time and radius are also deduced. A relation is shown between the various assumed masses of the Universe and its critical radius. Additional Universe parameters are estimated such as the deceleration factor and a solution for the Poisson equation in the Hubble field. A brief comment t on high-standard candles is included.
文摘In a recent article [1] the author of this Part II proposed the parameter ΓH for the acceleration expansion of the Universe, instead of dark energy, defining such parameter as ΓH=H2⋅r(M/S2) = a constant. A question about the expansive and constant acceleration of the internal levels of the Universe could be solved by equation ((3.10) ref. [1]) of the same article: Any assumed internal distance, lower than r of (ref. [2]) implies a proportional change in the squared Hubble parameter, so maintaining the constancy of the ΓH value for every stratum of the Universe. In the present work it is proved the constancy of the Hubble force by means of its generalized coordinates. As well, an equation to relate the Lagrange and the Hamilton functions is obtained for the Hubble field. Two concepts for both Hubble’s energy and tensor are also proposed. Finally, prior misprints of Part I, ref. [1], are corrected in the Appendix.
文摘The theory that gravitons lose energy thru gravitational redshift while traveling in a gravitational field is applied to the universe. It is proposed that a co-moving volume element is required for the luminosity distance relation because the gravitational field acts simultaneously in three dimensions rather than just along a geodesic curve. With only a relatively small baryonic mass density the curve fit of the novel luminosity distance relation to Type Ia supernovae distance data is of the same quality as for the standard Lambda Cold Dark Matter model.
文摘The Doppler formula should be used directly to calculate red shift of Cosmology. The first is gravity, the second is the Doppler’s effect and the third is the Compton scattering. The red shift of cosmology is considered to be caused by the receding motions of celestial bodies, of which essence is the Doppler’s effect. However, the basic formula used to calculate the relationship between red shift and distance for Ia supernova in cosmology is z+1= R(t0)/R(t1)which is based on the R-W metric and related to the scalar factor R(t). This is different from the Doppler formula which is related to speed factor R(t). Because the R-W metric is only a mathematical structure of space, the metric red shift is not an independent law of physics, this inconsistence is not allowed in physics. It is proved strictly in this paper that the formula of metric red shift is only the result of the first order approximation. If higher order approximations are considered, we can obtain a restrict condition R(t). It indicates that if the formula of metric red shift holds, it can only be suitable to describe the spatial uniform expansion, unsuitable for the practical universal process with acceleration. The further study reveals that the R-W metric violates the invariability principle of light’s speed in vacuum. The time delay caused by
文摘Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between quarks in protons in cold hydrogen gas in outskirts of the universe. The mechanisms for such creation of dark matter and PRE are reviewed and updated in greater detail and clearer manner. The so-generated dark matter in a galaxy can account for the galaxy’s rotation curve. Star formation in this galaxy uses up the hydrogen atoms and thereby reduces its dark matter content. Dark matter created in intergalactic hydrogen gas can form filaments. In a hypothetical model of the universe, a hydrogen atom with a small amount of negative relative energy or dark matter at the outskirts of this universe can via collisions with other atoms turn into one with a small positive relative energy PRE. Once such a sign change takes place, gravitational attraction switches to anti-gravity repulsion unopposed by any pressure gradient. This leads to a “run away” hydrogen atom moving away from the mass center of the universe and provides a basic mechanism for the accelerating expansion of the universe. This theoretical expansion and the measured redshift data are both compatible with the conception of an acceleratingly expanding universe and complement each other. But they cannot verify each other directly because the present model has been constructed for purposes different from those of the measurements. But it can be shown that both approaches do support each other qualitatively under certain circumstances for small velocities. Dark matter and PRE in the present model are not foreign objects like WIMPs and dark energy-cosmological constant but can only be created in cold hydrogen gas in gravitational field. To achieve this, infrequent collisions among the hydrogen atoms must take place. Dark matter was created first and can eventually later evolve into PRE in the outskirts of the universe and in the intergalactic
文摘We hypothesize that gravitons contribute significantly to the process that flattens galaxy rotation curves. Gravitons travelling against a gravitational field experience an energy loss due to gravitational redshift identical to the effect on light. This energy loss requires an increased rotational velocity to stabilize a galaxy. We will show that this approach successfully explains the rotational properties of spiral and dwarf galaxies.
文摘Aims: The paper explores the hypothesis that the speed of light c is decreasing over time at rate (dc/dt)=-H? c, H being the Hubble constant. This hypothesis differs from the so-called tired light, in which the velocity c is supposed to vary during the journey of photons in the empty space for some frictional mechanism. In the hypothesis of the author the speed c, during this journey, is assumed constant. In this way the problems of the tired hypothesis are overcome. Methods: The paper links the variation dc/dt with the Hubble constant and infers a value of dc/dt from the difference between the value of the variation of the Earth-Moon distance measured by the Lunar Laser Ranging Experiment and the tidal effect. Results: Under the hypothesis c time varying, we explain: 1) The cosmological redshift. 2) The anomalous acceleration ap ≈ -8 × 10-10 m?sec-2, measured for some spacecrafts. 3) The high redshift of supernovae Ia, which seems to evidence an acceleration of the expansion of the universe. 4) The peripheral motion of stars in galaxies around their rotational centre. 5) The dilation of the light curves observed for supernovae Ia.
文摘Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a(t) through the ΛCDM model. We have proposed a new theory to explain Hubble law. The theory has been validated against observation data. It proposes a new approach of time which introduces the cosmic time tc. Cosmic time is an absolute reference to universe. It is zero at the edge with tc = 0, tc = T at the observer position and tc = s for any source between the edge and the observer, with T > s > 0. This theory acts like the relativity of space-time. The redshift is interpreted as a perspective parameter p(tc) = tc/T. Using gravitation, it is the Einstein effect applied to the uni-verse. This paper comments and interprets further consequences of this new theory. We emphasize the difference between duration (as usually used in classical cosmologic metrics) and the cosmic time tc as a notion of date. It induces two related effects: relativity of speed of light and time stretching. We explain why the cosmological standard model is not well suited to describe the Hubble law, to describe the universe. We also explain why gravitation and temperature increase when going from the center to the edge of the universe, when going from present to birth. The model has no use of black energy. As a consequence, the universe is seen as a black hole created by the cosmic time shock wave when tc = 0.
文摘We propose a new interpretation of Hubble law. Waves are observed in the observer space-time. It defines the observer proper time T. Space-time is composed of three spatial dimensions and three temporal parameters: proper-time s of the observed object, proper time T of the observer and integration time t (currently considered as relative time). Time origin is the birth of the universe. So, universe is stable;it can be seen as the comobile space of expansion theory. When changing space-time from the source to the observer, waves are seen cooling;this explains the redshift effect. The distance is defined as the product of the delay time with the local speed of light of the observer. The mistake between t and T can explain why universe is viewed as not only in expansion but also in acceleration whereas we think it is stable.
文摘In a previous article entitled: “Evidences for varying speed of light with time” [1], a series of observational evidence was presented in favor of the hypothesis that the speed of light varies with time according to the relationship d<i>c</i>/d<i>t</i> = -<i>Hc</i>, where <i>H</i> is the Hubble constant which is considered a universal constant. In this paper we propose to elaborate on the observational evidence supporting the hypothesis, and to probe the consequences of this relationship on General Relativity. Also we will provide a theoretical justification of the previous relationship and we will show how from it we can deduce galactic velocity curves. We can deduce the important empirical Tully-Fisher relation linking these curves to the baryonic mass of the galaxy and we can justify the apparent accelerated expansion of the universe without intervening elusive entities such as dark matter and dark energy.
文摘We deduced the Hubble law and the age of the Universe, through the introduction of the Inverse Yukawa Field (IYF), as a non-local additive complement of the Newtonian gravitation (Modified Newtonian Dynamics). As a result, we connected the dynamics of astronomical objects at great scale with the Friedmann-Robertson-Walker ΛFRW) model. From the corresponding formalism, the Hubble law can be expressed as v?= (4π[G]/c)r, which was derived by evaluating the IYF force at distances much greater than 50 Mpc, giving a maximum value for the expansion rate of the universe of H0(max)?≈ 86.31 km·s-1Mpc-1, consistent with the observational data of 392 astronomical objects from NASA/IPAC Extragalactic Database (NED). This additional field (IYF) provides a simple interpretation of dark energy as the action of baryonic matter at large scales. Additionally, we calculated the age of the universe as 11 Gyr, in agreement with recent measurements of the age of the white dwarfs in the solar neighborhood.
文摘The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and galaxies, from this same redshift <em>z</em>. After having exposed critiques on the demonstration and the relativistic use which require the assumption of an expanding universe by itself, it is proposed within the framework of neo-Newtonian mechanics the formula <img src="Edit_5abcd41b-f0f0-4fdd-8d05-07b43d1fa78c.png" alt="" /> where <em>V</em> is the speed from the source. This formula has the double characteristic of being equivalent to relativistic predictions for low redshifts, but of deviating from them by up to 17% for high redshifts. It is consistent with the observation of the anisotropy of the Universe and the Cosmic Microwave Background. It helps to explain Pioneer anomalies. It is compatible with the constancy in the majority of cases of interference phenomena. Finally, it provides a new analysis grid for the observation of supernovae, galaxies and distant pulsars, thus opening up new fields of research on the increase in distances attributed to dark energy and also in other areas of the cosmology.
文摘Current progress in cosmic microwave background (CMB) anisotropy measurements opens up the possibility of determining Hubble’s constant (H0 = h × 100 km s−1 Mpc−1) from the CMB power spectrum radiation temperature anisotropy. The results show that, besides the Lambda cold dark matter (ΛCDM) model, much simpler Einstein-de Sitter (EdeS) models without the cosmological constant can fit the data as well, or even better, than the ΛCDM model. Calculations with EdeS models yield unexpectedly low values for Hubble’s constant of h = 0.30 and 0.46, respectively. These values are completely inconsistent with the direct determination of h ~ 0.70 from the redshift (RS) of spectral lines. In the present paper I consider whether the gap between h = 0.3 and h = 0.7 could be explained using conventional physics without introducing further hypotheses, or whether the RS of starlight and the RS of the CMB could stem from different physical origins.
文摘Although dark energy and dark matter have not yet been detected, they are believed to comprise the majority of the universe. Observations of the flat rotation curve of galaxies may be explained by dark matter and dark energy. This article, using Newton’s laws and Einstein’s theory of gravitation, shows that it is possible to define a new term, called E0, variable in time and space, of which one of its limits is the Hubble constant H0. I show that E0?is strongly linked to an explanation of the flat rotation curve of galaxies. This strong correlation between Hubble’s constant H0?and E0 enables us to solve the mystery of the surplus of gravity that is stabilizing the universe.
文摘The evolution of the universe from an initial dramatic event, the Big-Bang, is firmly established. Hubble’s law [1] (HL) connects the velocity of galactic objects and their relative distance: v(r) = Hr, where H is the Hubble constant. In this work we suggest that HL is not valid at large distances because of total energy conservation. We propose an expansion of the velocity in terms of their relative distance and produce a better fit to the available experimental data. Using a simple “dust” universe model, we can easily calculate under which conditions an (unstable) equilibrium state can be reached and we estimate the values of the matter present in the universe as well as the “dark energy”. Within the same formalism we can derive the “deceleration parameter”. We do not need to invoke any “dark energy”, its role being played by the kinetic correction. The resulting picture is that the universe might reach an unstable equilibrium state whose fate will be decided by fluctuations: either collapse or expand forever.
文摘There are three main mechanisms to cause the red shift of spectrum in physics. The first is gravity which is related to mass. The second is the Compton scattering which is related to the energy transformation of photon. The third is the Doppler’s effect which is related to velocity. The basic formula used to calculate the relation of red shift and distance of Ia supernova in cosmology is which is related to the scalar factor of the R-W metric. It is completely different from the Doppler formula of red shift which is related to velocity factor . This kind of inconsistency is not allowed in physics. Because of , when became larger and larger with time increase, z became smaller and smaller, means that space expansion leads to red shift becoming smaller. At present time, we have and , means that there is no red shift for the light emitted from distance celestial bodies at present. The results obviously violate the Hubble law! It is proved strictly in mathematics that the formula is untenable unless constant and . The further study reveals that the essential reason of the mistake is that the R-W metric violates the principle of light’s speed invariable. The time delay caused by relativity velocity between light’s source and observer is neglected. Besides, there exists the problem of time misalignment between theoretical calculation and practical observations in the original documents of Ia supernova projects. So the formula used to calculate the relation between red shift and distance of Ia supernova is wrong and the deduced conclusion about dark energy and the accelerating expansion of the universe are incredible. It is proved in this paper that based on the Doppler’s formula and the method of numerical calculation, the relation of red shift and distance of Ia supernova can be explained well. The hypotheses of dark energy and the accelerating expansion of the universe are completely unnecessary in cosmology.