期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controlled Fusion Strategy Using Ultra-Intense Laser Derived Positron Generation for Initiation
1
作者 Robert Le Moyne 《Journal of Applied Mathematics and Physics》 2018年第4期693-703,共11页
A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a c... A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion. 展开更多
关键词 Controllable Nuclear Fusion Ultra-Intense Laser POSITRON POSITRON Generation ANTIMATTER TRIDENT PROCESS Bethe-Heitler PROCESS Breit-Wheeler PROCESS Volumetric ignition hotspot ignition Fast ignition
下载PDF
Positron Induced Fusion Pulsed Space Propulsion through an Ultra-Intense Laser
2
作者 Robert LeMoyne 《Journal of Applied Mathematics and Physics》 2017年第4期813-821,共9页
A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis... A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis. As opposed to traditional strategies positron antimatter is considered rather than antiproton antimatter. Positron antimatter can be produced by an ultra- intense laser incident on a high atomic number target, such as gold. The ultra-intense laser production of positron antimatter mechanism greatly alleviates constraints, such as requirements for antimatter storage imperative for antiproton antimatter. Also the ultra-intense laser and associated energy source can be stationary or positioned remote while the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion is in flight. Various mechanisms for antimatter catalyzed fusion are considered, for which the preferred mechanism is the antiproton hotspot ignition strategy. Fundamental performance analysis is subsequently applied to derive positron antimatter generation requirements and associated propulsion performance. The characteristics of the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target imply a promising non-chemical propulsion alternative for the transport of bulk cargo to support space missions. 展开更多
关键词 Antimatter INDUCED FUSION PULSED SPACE PROPULSION Nuclear FUSION Ultra-Intense Laser Bethe-Heitler Process POSITRON Antiproton hotspot ignition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部