This paper is concerned with bifurcations and chaos control of the Hindmarsh-Rose(HR)neuronal model with the time-delayed feedback control.By stability and bifurcation analysis,we find that the excitable neuron can em...This paper is concerned with bifurcations and chaos control of the Hindmarsh-Rose(HR)neuronal model with the time-delayed feedback control.By stability and bifurcation analysis,we find that the excitable neuron can emit spikes via the subcritical Hopf bifurcation,and exhibits periodic or chaotic spiking/bursting behaviors with the increase of external current.For the purpose of control of chaos,we adopt the time-delayed feedback control,and convert chaos control to the Hopf bifurcation of the delayed feedback system.Then the analytical conditions under which the Hopf bifurcation occurs are given with an explicit formula.Based on this,we show the Hopf bifurcation curves in the two-parameter plane.Finally,some numerical simulations are carried out to support the theoretical results.It is shown that by appropriate choice of feedback gain and time delay,the chaotic orbit can be controlled to be stable.The adopted method in this paper is general and can be applied to other neuronal models.It may help us better understand the bifurcation mechanisms of neural behaviors.展开更多
A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. ...A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. The method is summarized as three steps, namely linear analysis at critical value, perturba- tion and increment for continuation. The PIS can bypass and avoid the tedious calculation of the center manifold reduction (CMR) and normal form. Meanwhile, the PIS not only inherits the advantages of the method of multiple scales (MMS) but also overcomes the disadvantages of the incremental harmonic balance (IHB) method. Three delayed systems are used as illustrative examples to demonstrate the validity of the present method. The periodic solution derived from the delay-induced Hopf bifurcation is obtained in a closed form by the PIS procedure. The validity of the results is shown by their consis- tency with the numerical simulation. Furthermore, an approximate solution can be calculated in any required accuracy.展开更多
The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa- tions, which can be called attractor bifurcation. It is proved that as the control pa- rameter crosses certain critical value, the sy...The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa- tions, which can be called attractor bifurcation. It is proved that as the control pa- rameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a uni?ed point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.展开更多
We establish an algebraic method and an integral method to compute the Liapunov constants and Hopf cyclicity for a general Lienard system on the plane.
In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights o...In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights on bifurcation and stability, also obtain some conditions for subcfitical and supercritical. Finally, we give some numerical simulation studies of system in order to verify analytic results.展开更多
The problem of existence of knot-like solitons as the energy-minimizing configurations in the Faddeev model, topologically characterized by an Hopf invariant, Q, is considered. It is proved that, in the full space sit...The problem of existence of knot-like solitons as the energy-minimizing configurations in the Faddeev model, topologically characterized by an Hopf invariant, Q, is considered. It is proved that, in the full space situation, there exists an infinite set S of integers so that for any m ∈ S, the Faddeev energy, E, has a minimizer among the class Q = m; in the bounded domain situation, the same existence theorem holds when S is the set of all integers. One of the important technical results is that E and Q satisfy the sublinear inequality E ≤ C|Q|<sup>3/4</sup>, where C > 0 is a universal constant, which explains why knotted (clustered soliton) configurations are preferred over widely separated unknotted (multisoliton) configurations when |Q| is sufficiently large.展开更多
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter va...In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.展开更多
Local bifurcation phenomena in a four-dlmensional continuous hyperchaotic system, which has rich and complex dynamical behaviours, are analysed. The local bifurcations of the system are investigated by utilizing the b...Local bifurcation phenomena in a four-dlmensional continuous hyperchaotic system, which has rich and complex dynamical behaviours, are analysed. The local bifurcations of the system are investigated by utilizing the bifurcation theory and the centre manifold theorem, and thus the conditions of the existence of pitchfork bifurcation and Hopf bifurcation are derived in detail. Numerical simulations are presented to verify the theoretical analysis, and they show some interesting dynamics, including stable periodic orbits emerging from the new fixed points generated by pitchfork bifurcation, coexistence of a stable limit cycle and a chaotic attractor, as well as chaos within quite a wide parameter region.展开更多
In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and...In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and Weibel, respectively. The averaged equation obtained from the modified scheme is simple enough but it retains the required information for the local nonlinear dynamics around an equilibrium. As an application of the present method, the delay value for which a secondary Hopf bifurcation occurs is successfully located for a delayed van der Pol oscillator.展开更多
This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar...This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.展开更多
A disease transmission model of SIS type with stage structure and a delay is formulated. Stability of the disease free equilibrium, and existence, uniqueness, and stability of an endemic equilibrium, are investigated... A disease transmission model of SIS type with stage structure and a delay is formulated. Stability of the disease free equilibrium, and existence, uniqueness, and stability of an endemic equilibrium, are investigated for the model. The stability results arc stated in terms of a key threshold parameter. The effects of stage structure and time delay on dynamical behavior of the infectious disease are analyzed. It is shown that stage structure has no effect on the epidemic model and Hopf bifurcation can occur as the time delay increases.展开更多
This paper presents an investigation on the phenomenon of delayed bifurcation in time-delayed slow-fast differential systems.Here the two delayed's have different meanings.The delayed bifurcation means that the bi...This paper presents an investigation on the phenomenon of delayed bifurcation in time-delayed slow-fast differential systems.Here the two delayed's have different meanings.The delayed bifurcation means that the bifurcation does not happen immediately at the bifurcation point as the bifurcation parameter passes through some bifurcation point,but at some other point which is above the bifurcation point by an obvious distance.In a time-delayed system,the evolution of the system depends not only on the present state but also on past states.In this paper,the time-delayed slow-fast system is firstly simplified to a slow-fast system without time delay by means of the center manifold reduction,and then the so-called entry-exit function is defined to characterize the delayed bifurcation on the basis of Neishtadt's theory.It shows that delayed Hopf bifurcation exists in time-delayed slow-fast systems,and the theoretical prediction on the exit-point is in good agreement with the numerical calculation,as illustrated in the two illustrative examples.展开更多
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,th...This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.展开更多
Let G be an abelian group, B the G-graded λ-Hopf algebra with A being a bicharacter on G. By introducing some new twisted algebras (coalgebras), we investigate the basic properties of the graded antipode and the st...Let G be an abelian group, B the G-graded λ-Hopf algebra with A being a bicharacter on G. By introducing some new twisted algebras (coalgebras), we investigate the basic properties of the graded antipode and the structure for B. We also prove that a G-graded λ-Hopf algebra can be embedded in a usual Hopf algebra. As an application, it is given that if G is a finite abelian group then the graded antipode of a finite dimensional G-graded A-Hopf algebra is invertible.展开更多
Some basic equations and the relations among various Markov chains are established. These works are the bases in the investigation of the theory of Markov chain in random environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.110020731117201711102041)
文摘This paper is concerned with bifurcations and chaos control of the Hindmarsh-Rose(HR)neuronal model with the time-delayed feedback control.By stability and bifurcation analysis,we find that the excitable neuron can emit spikes via the subcritical Hopf bifurcation,and exhibits periodic or chaotic spiking/bursting behaviors with the increase of external current.For the purpose of control of chaos,we adopt the time-delayed feedback control,and convert chaos control to the Hopf bifurcation of the delayed feedback system.Then the analytical conditions under which the Hopf bifurcation occurs are given with an explicit formula.Based on this,we show the Hopf bifurcation curves in the two-parameter plane.Finally,some numerical simulations are carried out to support the theoretical results.It is shown that by appropriate choice of feedback gain and time delay,the chaotic orbit can be controlled to be stable.The adopted method in this paper is general and can be applied to other neuronal models.It may help us better understand the bifurcation mechanisms of neural behaviors.
基金Supported by National Natural Science Funds for Distinguished Young Scholar (Grant No. 10625211)Key Program of National Natural Science Foundation of China (Grant No. 10532050)+1 种基金Program of Shanghai Subject Chief Scientist (Grant No. 08XD14044)Hong Kong Research Grants Council under CERG (Grant No. CityU 1007/05E)
文摘A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. The method is summarized as three steps, namely linear analysis at critical value, perturba- tion and increment for continuation. The PIS can bypass and avoid the tedious calculation of the center manifold reduction (CMR) and normal form. Meanwhile, the PIS not only inherits the advantages of the method of multiple scales (MMS) but also overcomes the disadvantages of the incremental harmonic balance (IHB) method. Three delayed systems are used as illustrative examples to demonstrate the validity of the present method. The periodic solution derived from the delay-induced Hopf bifurcation is obtained in a closed form by the PIS procedure. The validity of the results is shown by their consis- tency with the numerical simulation. Furthermore, an approximate solution can be calculated in any required accuracy.
基金Project supported by the Office of Naval Research,the National Science Foundation,and the National Natural Science Foundation of China (No.19971062).
文摘The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa- tions, which can be called attractor bifurcation. It is proved that as the control pa- rameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a uni?ed point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.
文摘We establish an algebraic method and an integral method to compute the Liapunov constants and Hopf cyclicity for a general Lienard system on the plane.
文摘In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights on bifurcation and stability, also obtain some conditions for subcfitical and supercritical. Finally, we give some numerical simulation studies of system in order to verify analytic results.
文摘The problem of existence of knot-like solitons as the energy-minimizing configurations in the Faddeev model, topologically characterized by an Hopf invariant, Q, is considered. It is proved that, in the full space situation, there exists an infinite set S of integers so that for any m ∈ S, the Faddeev energy, E, has a minimizer among the class Q = m; in the bounded domain situation, the same existence theorem holds when S is the set of all integers. One of the important technical results is that E and Q satisfy the sublinear inequality E ≤ C|Q|<sup>3/4</sup>, where C > 0 is a universal constant, which explains why knotted (clustered soliton) configurations are preferred over widely separated unknotted (multisoliton) configurations when |Q| is sufficiently large.
基金supported by the National Natural Science Foundation of China(Grant Nos.10772135 and 60874028)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11202148)+2 种基金the Incentive Funding of the National Research Foundation of South Africa(GrantNo.IFR2009090800049)the Eskom Tertiary Education Support Programme of South Africathe Research Foundation of Tianjin University of Science and Technology
文摘In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.
基金supported by the National Natural Science Foundation of China (Grant Nos 60774088,10772135 and 60574036)the Research Foundation from the Ministry of Education of China (Grant Nos 107024 and 207005)+1 种基金the Program for New Century Excellent Talents in University of China (NCET)the Application Base and Frontier Technology Project of Tianjin,China(Grant No 08JCZDJC21900)
文摘Local bifurcation phenomena in a four-dlmensional continuous hyperchaotic system, which has rich and complex dynamical behaviours, are analysed. The local bifurcations of the system are investigated by utilizing the bifurcation theory and the centre manifold theorem, and thus the conditions of the existence of pitchfork bifurcation and Hopf bifurcation are derived in detail. Numerical simulations are presented to verify the theoretical analysis, and they show some interesting dynamics, including stable periodic orbits emerging from the new fixed points generated by pitchfork bifurcation, coexistence of a stable limit cycle and a chaotic attractor, as well as chaos within quite a wide parameter region.
基金FANEDD of China (200430)the National Natural Science Foundation of China (10372116,10532050)
文摘In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and Weibel, respectively. The averaged equation obtained from the modified scheme is simple enough but it retains the required information for the local nonlinear dynamics around an equilibrium. As an application of the present method, the delay value for which a secondary Hopf bifurcation occurs is successfully located for a delayed van der Pol oscillator.
基金This work is supported by National Natural Science Foundation of Chinaby the excellent doctorate fund of Nanjing agricultural university
文摘This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.
基金the K.C. Wong Education Foundation, Hong Kong and Partly by the China Postdoctoral Science Foundation.
文摘 A disease transmission model of SIS type with stage structure and a delay is formulated. Stability of the disease free equilibrium, and existence, uniqueness, and stability of an endemic equilibrium, are investigated for the model. The stability results arc stated in terms of a key threshold parameter. The effects of stage structure and time delay on dynamical behavior of the infectious disease are analyzed. It is shown that stage structure has no effect on the epidemic model and Hopf bifurcation can occur as the time delay increases.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.200430)in part by the National Natural Science Foundation of China (Grant Nos.10825207,10532050)
文摘This paper presents an investigation on the phenomenon of delayed bifurcation in time-delayed slow-fast differential systems.Here the two delayed's have different meanings.The delayed bifurcation means that the bifurcation does not happen immediately at the bifurcation point as the bifurcation parameter passes through some bifurcation point,but at some other point which is above the bifurcation point by an obvious distance.In a time-delayed system,the evolution of the system depends not only on the present state but also on past states.In this paper,the time-delayed slow-fast system is firstly simplified to a slow-fast system without time delay by means of the center manifold reduction,and then the so-called entry-exit function is defined to characterize the delayed bifurcation on the basis of Neishtadt's theory.It shows that delayed Hopf bifurcation exists in time-delayed slow-fast systems,and the theoretical prediction on the exit-point is in good agreement with the numerical calculation,as illustrated in the two illustrative examples.
基金The project supported by the National Natural Science Foundation of China (19972025)
文摘This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.
基金Supported by the National Natural Science Foundation of ChinaYangzhou University Natural Science Foundation
文摘Let G be an abelian group, B the G-graded λ-Hopf algebra with A being a bicharacter on G. By introducing some new twisted algebras (coalgebras), we investigate the basic properties of the graded antipode and the structure for B. We also prove that a G-graded λ-Hopf algebra can be embedded in a usual Hopf algebra. As an application, it is given that if G is a finite abelian group then the graded antipode of a finite dimensional G-graded A-Hopf algebra is invertible.
基金the National Natural Science Foundation of China(10 0 710 5 8-2 ) and Doctoral Programme Foundationof China
文摘Some basic equations and the relations among various Markov chains are established. These works are the bases in the investigation of the theory of Markov chain in random environment.