In this paper, we study a real hypersurface M in a non-at 2-dimensional complex space form M2(c) with η-parallel Ricci and shape operators. The characterizations of these real hypersurfaces are obtained.
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ com...Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.展开更多
文摘In this paper, we study a real hypersurface M in a non-at 2-dimensional complex space form M2(c) with η-parallel Ricci and shape operators. The characterizations of these real hypersurfaces are obtained.
文摘Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.