This paper is an analytical study of the rotating flow of a third grade fluid past a porous plate with partial slip effects. It serves as a flow model for the study of polymers. The analytic solution has been determin...This paper is an analytical study of the rotating flow of a third grade fluid past a porous plate with partial slip effects. It serves as a flow model for the study of polymers. The analytic solution has been determined using homotopy analysis method (HAM).展开更多
An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small phys...An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.展开更多
An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite, parallel disks. The analytical methods called Homotopy Analysi...An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite, parallel disks. The analytical methods called Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) have been used to solve nonlinear differential equations. It has been attempted to show the capabilities and wide-range applications of the proposed methods in comparison with a type of numerical analysis as Boundary Value Problem (BVP) in solving this problem. Also, the velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the velocity field. Furthermore, the results reveal that HAM and HPM are very effective and convenient.展开更多
文摘This paper is an analytical study of the rotating flow of a third grade fluid past a porous plate with partial slip effects. It serves as a flow model for the study of polymers. The analytic solution has been determined using homotopy analysis method (HAM).
文摘An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.
文摘An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite, parallel disks. The analytical methods called Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) have been used to solve nonlinear differential equations. It has been attempted to show the capabilities and wide-range applications of the proposed methods in comparison with a type of numerical analysis as Boundary Value Problem (BVP) in solving this problem. Also, the velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the velocity field. Furthermore, the results reveal that HAM and HPM are very effective and convenient.