Squeezed states belong to the most prominent non-classical resources.They have compelling applications in precise measurement, quantum computation, and detection.Here, we report on the direct measurement of 13.8 d B s...Squeezed states belong to the most prominent non-classical resources.They have compelling applications in precise measurement, quantum computation, and detection.Here, we report on the direct measurement of 13.8 d B squeezed vacuum states by improving the interference efficiency and gain of balanced homodyne detection.By employing an auxiliary laser beam, the homodyne visibility is increased to 99.8%.The equivalent loss of the electronic noise is reduced to 0.05% by integrating a junction field-effect transistor(JFET) buffering input and another JFET bootstrap structure in the balanced homodyne detector.展开更多
Different from the traditional way of using piezoelectric (PZT)phase shifter to measure phase difference, a new method is designed to calculate it between signals in the two arms of a homodyne fiber interferometer. ...Different from the traditional way of using piezoelectric (PZT)phase shifter to measure phase difference, a new method is designed to calculate it between signals in the two arms of a homodyne fiber interferometer. A simple homodyne fiber interferometer system is then established to measure the interference photoeurrent and the photocurrents from the two fiber arms generated by the signal power on a temperature control plat. The homodyne fiber interferometer system is composed of fiber and sensitive to the variation of temperature. Thus, is necessary to study the temperature characteristics in the phase measurement of homodyne fiber interferometer. The experimental results show that the variation of the phase difference of signals in the two fiber arms is proportional to the variation of temperature.展开更多
We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in th...We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.展开更多
We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped...We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.展开更多
We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr n...We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology, The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.展开更多
Balanced homodyne detection has been introduced as a reliable technique of reconstructing the quantum state of a single photon Fock state, which is based on coupling the single photon state and a strong coherent local...Balanced homodyne detection has been introduced as a reliable technique of reconstructing the quantum state of a single photon Fock state, which is based on coupling the single photon state and a strong coherent local oscillator in a beam splitter and detecting the field quadrature at the output ports separately. The main challenge associated with a tomographic characterization of the single photon state is mode matching between the single photon state and the local oscillator. Utilizing the heralded single photon generated by the spontaneous parametric process, the multi-mode theoretical model of quantum interference between the single photon state and the coherent state in the fiber beam splitter is established.Moreover, the analytical expressions of the temporal-mode matching coefficient and interference visibility and relationship between the two parameters are shown. In the experimental scheme, the interference visibility under various temporalmode matching coefficients is demonstrated, which is almost accordant with the theoretical value. Our work explores the principle of temporal-mode matching between the single photon state and the coherent photon state, originated from a local oscillator, and could provide guidance for designing the high-performance balanced homodyne detection system.展开更多
We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr ...We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.展开更多
Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance opt...Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance optical communication systems and in optical fiber WANs. There are two major patterns in coherent optical fiber communication: heterodyne and homodyne. Compared with the heterodyne scheme, the homodyne optical fiber communication system has the following advantages: (1) The sensitivity of the homodyne receiver is higher than that of the heterodyne receiver. As we know, the PSK homodyne optical fiber communication system has the highest sensitivity in coherent optical fiber communication systems. So it is much suitable to be used in long distance optical communication systems or in FDM systems. (2) Because the homodyne receiver only uses the baseband to demodulate the transmitted signals, it occupies much narrower frequency domain than the heterodyne receiver does, which makes it more suitable to be used in multichannel systems. (3) The demodulation pattern used in homodyne receiver is much easier than that used in the heterodyne receiver, since it only needs the baseband demodulation. Usually we construct a homodyne receiver with an optical phase locked loop (OPLL). The research of the OPLL began at 1960′s and the study of the homodyne receiver has been made gradually. In 1984, the first homodyne optical fiber communication system was demonstrated in BTRL, in which the signal laser and the local laser were all 1.5 μm He Ne gas lasers, and the OPLL used was a balanced one. In 1989, L.G.Kazovsky demonstrated experimentally a homodyne receiver in Bellcore using two 1.3 μm Nd:YAG lasers as the signal laser and the local laser and also using a balanced OPLL. Because the linewidth of the normal semiconductor laser is too large and its frequency stability is much poorer, it is very difficult to construct a homodyne receiver with the semiconductor lasers. At the end of 1989, the fi展开更多
We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent■squeezed vacuum states.According to quantum Cramér-Rao theorem,we analytically...We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent■squeezed vacuum states.According to quantum Cramér-Rao theorem,we analytically obtain the ultimate phase sensitivities for two types of phase shift accumulating in one-and two-arm.Compared with the case of one-arm phase shift,the model with phase shift encoding in both arms may provide a better sensitivity when the strength of squeezed vacuum state is large enough.Furthermore,we discuss the achievable sensitivities with the homodyne measurement by invoking of error-propagation formula.In addition,we study the effect of internal and outernal photon losses on the phase sensitivity of the SU(1,1)interferometer and find that the unbalanced interferometer is helpful to improve precision even with high external losses.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11654002,61575114,11874250,and 11804207)National Key Research and Development Program of China(No.2016YFA0301401)+2 种基金Program for Sanjin Scholar of Shanxi ProvinceProgram for Outstanding Innovative Teams of Higher Learning Institutions of ShanxiFund for Shanxi “1331 Project”Key Subjects Construction
文摘Squeezed states belong to the most prominent non-classical resources.They have compelling applications in precise measurement, quantum computation, and detection.Here, we report on the direct measurement of 13.8 d B squeezed vacuum states by improving the interference efficiency and gain of balanced homodyne detection.By employing an auxiliary laser beam, the homodyne visibility is increased to 99.8%.The equivalent loss of the electronic noise is reduced to 0.05% by integrating a junction field-effect transistor(JFET) buffering input and another JFET bootstrap structure in the balanced homodyne detector.
基金supported by the National Natural Science Foundation of China (60372061)Basic Fund for the Scientific Research Project of Jilin University (200903296)
文摘Different from the traditional way of using piezoelectric (PZT)phase shifter to measure phase difference, a new method is designed to calculate it between signals in the two arms of a homodyne fiber interferometer. A simple homodyne fiber interferometer system is then established to measure the interference photoeurrent and the photocurrents from the two fiber arms generated by the signal power on a temperature control plat. The homodyne fiber interferometer system is composed of fiber and sensitive to the variation of temperature. Thus, is necessary to study the temperature characteristics in the phase measurement of homodyne fiber interferometer. The experimental results show that the variation of the phase difference of signals in the two fiber arms is proportional to the variation of temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074002 and 61275119)the Doctoral Foundation of the Ministry of Education of China(Grant No.20103401110003)the Natural Science Research Project of Education Department of Anhui Province,China(Grant Nos.KJ2013A205,KJ2011ZD07,and KJ2012Z309)
文摘We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.
基金supported by the National Natural Science Foundation of China(Grant No.60978009)the National Basic Research Program of China(Grant Nos.2009CB929604 and 2007CB925204)
文摘We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016)
文摘We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology, The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.
基金Project supported by the National Special Fund for Major Research Instrument Development of China(Grant No.11527808)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11504262)+2 种基金the National Basic Research Program of China(Grant No.2014CB340103)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120032110055)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.14JCQNJC02300)
文摘Balanced homodyne detection has been introduced as a reliable technique of reconstructing the quantum state of a single photon Fock state, which is based on coupling the single photon state and a strong coherent local oscillator in a beam splitter and detecting the field quadrature at the output ports separately. The main challenge associated with a tomographic characterization of the single photon state is mode matching between the single photon state and the local oscillator. Utilizing the heralded single photon generated by the spontaneous parametric process, the multi-mode theoretical model of quantum interference between the single photon state and the coherent state in the fiber beam splitter is established.Moreover, the analytical expressions of the temporal-mode matching coefficient and interference visibility and relationship between the two parameters are shown. In the experimental scheme, the interference visibility under various temporalmode matching coefficients is demonstrated, which is almost accordant with the theoretical value. Our work explores the principle of temporal-mode matching between the single photon state and the coherent photon state, originated from a local oscillator, and could provide guidance for designing the high-performance balanced homodyne detection system.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91121023)the National Natural Science Foundation of China(Grant Nos.60978009 and 61378012)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20124407110009)the"973"Project(Grant Nos.2011CBA00200 and 2013CB921804)the PCSIRT(Grant No.IRT1243)
文摘We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.
文摘Because it has the advantages of high sensitivity, and it is easy to demodulate and convenient to select in FDM system, the coherent optical fiber communication system is much suitable to be used in long distance optical communication systems and in optical fiber WANs. There are two major patterns in coherent optical fiber communication: heterodyne and homodyne. Compared with the heterodyne scheme, the homodyne optical fiber communication system has the following advantages: (1) The sensitivity of the homodyne receiver is higher than that of the heterodyne receiver. As we know, the PSK homodyne optical fiber communication system has the highest sensitivity in coherent optical fiber communication systems. So it is much suitable to be used in long distance optical communication systems or in FDM systems. (2) Because the homodyne receiver only uses the baseband to demodulate the transmitted signals, it occupies much narrower frequency domain than the heterodyne receiver does, which makes it more suitable to be used in multichannel systems. (3) The demodulation pattern used in homodyne receiver is much easier than that used in the heterodyne receiver, since it only needs the baseband demodulation. Usually we construct a homodyne receiver with an optical phase locked loop (OPLL). The research of the OPLL began at 1960′s and the study of the homodyne receiver has been made gradually. In 1984, the first homodyne optical fiber communication system was demonstrated in BTRL, in which the signal laser and the local laser were all 1.5 μm He Ne gas lasers, and the OPLL used was a balanced one. In 1989, L.G.Kazovsky demonstrated experimentally a homodyne receiver in Bellcore using two 1.3 μm Nd:YAG lasers as the signal laser and the local laser and also using a balanced OPLL. Because the linewidth of the normal semiconductor laser is too large and its frequency stability is much poorer, it is very difficult to construct a homodyne receiver with the semiconductor lasers. At the end of 1989, the fi
基金Supported by the National Natural Science Foundation of China under Grant Nos.11747161 and 11974189the China Postdoctoral Science Foundation under Grant No.2018M642293
文摘We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent■squeezed vacuum states.According to quantum Cramér-Rao theorem,we analytically obtain the ultimate phase sensitivities for two types of phase shift accumulating in one-and two-arm.Compared with the case of one-arm phase shift,the model with phase shift encoding in both arms may provide a better sensitivity when the strength of squeezed vacuum state is large enough.Furthermore,we discuss the achievable sensitivities with the homodyne measurement by invoking of error-propagation formula.In addition,we study the effect of internal and outernal photon losses on the phase sensitivity of the SU(1,1)interferometer and find that the unbalanced interferometer is helpful to improve precision even with high external losses.