All-inorganic perovskites,adopting cesium(Cs+)cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites,have attracted much attention owing to the excellent thermal ...All-inorganic perovskites,adopting cesium(Cs+)cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites,have attracted much attention owing to the excellent thermal stability.However,all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions.Herein,we propose an efficient strategy to introduce antimony(Sb^(3+))into the crystalline lattices of CsPbI_(2)Br perovskite,which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase.Due to the much smaller ionic radius and lower electronegativity of trivalent Sb^(3+)than those of Pb^(2+),the Sb^(3+)doping can decrease surface defects and suppress charge recombination,resulting in longer carrier lifetime and negligible hysteresis.As a result,the all-inorganic perovskite solar cells(PSCs)based on 0.25%Sb^(3+)doped CsPbI_(2)Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%,which is 16%higher than that of the control devices without Sb^(3+)doping.Moreover,the Sb^(3+)doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture.Due to the use of low-cost and easy-to-process nanocarbon counter electrodes,the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable,and the manufacturing cost can be greatly reduced.This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.展开更多
Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 pero...Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 perovskite solution. PEA-MAPbI3 films show better pore filling into TiO2 scaffold that forms better contact, and induce longer exciton lifetime and higher quantum efficiency of photoinduced charge separation. As a result, the power conversion efficiency of PEA-MAPbI3 MPSCs is 37% higher than that of MAPbI3 MPSCs. And PEA-MAPbI3 MPSCs show excellent long-term stability that could keep 90% of origin power conversion efficiency for over 80 days in the air.展开更多
Highly crystalline perovskite films with large grains and few grain boundaries are conducive for efficient and stable perovskite solar cells.Current methods for preparing perovskite films are mostly based on a fast cr...Highly crystalline perovskite films with large grains and few grain boundaries are conducive for efficient and stable perovskite solar cells.Current methods for preparing perovskite films are mostly based on a fast crystallization process,with rapid nucleation and insufficient growth.In this study,MAPbI3 perovskite with inhibited nucleation and promoted growth in the TiO_(2)/ZrO_(2)/carbon triple mesoscopic scaffold was crystallized by modulating the precursor and the crystallization process.N-methylformamide showed high solubility for both methylammonium iodide and Pbl2 and hampered the formation of large colloids in the MAPbI3 precursor solution.Furthermore,methylammonium chloride was added to reduce large colloids,which are a possible source of nucleation sites.During the crystallization of MAPbI3,the solvent was removed at a slow controlled speed,to avoid rapid nucleation and provide sufficient time for crystal growth.As a result,highly oriented MAPbI3 crystals with suppressed non-radiative recombination and promoted charge transport were obtained in the triple mesoscopic layer with disordered pores.The corresponding hole-conductor-free,printable mesoscopic perovskite solar cells exhibited a highest power conversion efficiency of 18.82%.The device also exhibited promising long-term operational sta-bility of 1000 h under continuous illumination at maximum power point at 55±5°C and damp-heat stability of 1340 h aging at 85°C as well as 85%relative humidity.展开更多
基金support of the National Key R&D Program of China(No.2017YFA0208200)the National Natural Science Foundation of China(Nos.22022505 and 21872069)+3 种基金the Fundamental Research Funds for the Central Universities(Nos.020514380266,020514380272,and 020514380274)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(No.BK20220008)the Nanjing International Collaboration Research Program(Nos.202201007 and 2022SX00000955)the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(No.ZXL2021273).
文摘All-inorganic perovskites,adopting cesium(Cs+)cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites,have attracted much attention owing to the excellent thermal stability.However,all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions.Herein,we propose an efficient strategy to introduce antimony(Sb^(3+))into the crystalline lattices of CsPbI_(2)Br perovskite,which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase.Due to the much smaller ionic radius and lower electronegativity of trivalent Sb^(3+)than those of Pb^(2+),the Sb^(3+)doping can decrease surface defects and suppress charge recombination,resulting in longer carrier lifetime and negligible hysteresis.As a result,the all-inorganic perovskite solar cells(PSCs)based on 0.25%Sb^(3+)doped CsPbI_(2)Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%,which is 16%higher than that of the control devices without Sb^(3+)doping.Moreover,the Sb^(3+)doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture.Due to the use of low-cost and easy-to-process nanocarbon counter electrodes,the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable,and the manufacturing cost can be greatly reduced.This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.
基金support by the National Nature Science Foundation of China(91433203,61564003,61474049,61774050,51502141)the Ministry of Science and Technology of China(2015AA034601)+2 种基金the Guangxi Natural Science Foundation(2015GXNSFGA139002)the Bagui Scholars Program of Guangxi,Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials,China Postdoctoral Science Foundation(2016M600588)the Project of Guangxi Graduate Education(YCSW2017148)
文摘Phenethylamine(PEA) was successfully introduced into hole-conductor-free, fully printable mesoscopic MAPbI3 perovskite solar cells(MPSCs) with a carbon electrode by mixing phenethylammonium iodide with MAPbI3 perovskite solution. PEA-MAPbI3 films show better pore filling into TiO2 scaffold that forms better contact, and induce longer exciton lifetime and higher quantum efficiency of photoinduced charge separation. As a result, the power conversion efficiency of PEA-MAPbI3 MPSCs is 37% higher than that of MAPbI3 MPSCs. And PEA-MAPbI3 MPSCs show excellent long-term stability that could keep 90% of origin power conversion efficiency for over 80 days in the air.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grants No.91733301,51902117,52172198,and 22075094)the Fundamental Research Funds for the Central Universities,the Science and Technology Department of Hubei Province(Grant No.2017AAA190)+1 种基金the 111 Project(Grant No.B07038),the Program for HUST Academic Frontier Youth Team(Grant No.2016QYTD06)the Fundamental Research Funds for the Central Universities(Grant No.2019kfyXJJS051).
文摘Highly crystalline perovskite films with large grains and few grain boundaries are conducive for efficient and stable perovskite solar cells.Current methods for preparing perovskite films are mostly based on a fast crystallization process,with rapid nucleation and insufficient growth.In this study,MAPbI3 perovskite with inhibited nucleation and promoted growth in the TiO_(2)/ZrO_(2)/carbon triple mesoscopic scaffold was crystallized by modulating the precursor and the crystallization process.N-methylformamide showed high solubility for both methylammonium iodide and Pbl2 and hampered the formation of large colloids in the MAPbI3 precursor solution.Furthermore,methylammonium chloride was added to reduce large colloids,which are a possible source of nucleation sites.During the crystallization of MAPbI3,the solvent was removed at a slow controlled speed,to avoid rapid nucleation and provide sufficient time for crystal growth.As a result,highly oriented MAPbI3 crystals with suppressed non-radiative recombination and promoted charge transport were obtained in the triple mesoscopic layer with disordered pores.The corresponding hole-conductor-free,printable mesoscopic perovskite solar cells exhibited a highest power conversion efficiency of 18.82%.The device also exhibited promising long-term operational sta-bility of 1000 h under continuous illumination at maximum power point at 55±5°C and damp-heat stability of 1340 h aging at 85°C as well as 85%relative humidity.